Tag Archives: Simetrije u fizici

Šta su u fizici simetrije?

Simetrije (fizika)

Dirak je pretpostavio da ako postoji elektron sa negativnim naelektrisanjem -e i spinom 1/2, onda postoji i čestica sa pozitivnim naelektrisanjem +e i istom vrednošću spina. Tako je teoretski na osnovu simetrije pretpostavljeno postojanje pozitrona, što je kasnije i eksperimentalno otkriveno.

Simetrije u fizici su simetrije fizičkog sistema ili fizičkog zakona i odnose se na invarijantnost ili kovarijantnost. Invarijantnost fizičkog sistema ili zakona podrazumeva njegovu nepromenljivost na transformacije. Kovarijantnost se odnosi na to da jednačine koje opisuju sistem ili zakon zadržavaju svoj oblik, tj. postoji transformacija koja rešenje jednačine u jednom koordinatnom sistemu jednoznačno prebacuje u rešenje u drugom koordinatnom sistemu.

U fizici je koncept simetrije veoma važan, jer simetrije fizičkih sistema pojednostavljuju rešavanje problema u njima. U kvantnoj fizici značaj simetrije je još veći u odnosu na klasičnu fiziku, jer uopštavanje osobina omogućava teoretsku predikciju novih fenomena. Simetrije se u fizici pronalaze u svim oblastima proučavanja i teorija simetrija ima vrlo veliku primenu za razumevanje i proučavanje.

 

Transformacija prostora

Neke od najvažnijih prostornih transformacija su prostorne inverzije (refleksije sve tri ose), prostorne translacije, rotacije. Transformacije prostora se svode na transformacije koordinatnih sistema čija je gmatematička struktura grupa. U fizici se posmatraju grupe koje pripadaju nekoj mnogostrukosti. Najprimenjenije su Lijeve grupe kod kojih su preslikavanja među elementima analitička preslikavanja, a i oblast promene parametara, odnosno mnogostrukost kojoj Lijeve grupe pripadaju je analitička.

Prostorne simetrije su one transformacije koordinata ili koordinatnih sistema pri kojim jednačine kretanja ne menjaju oblik.

 

Simetrije u različitim oblastima fizike

  • Klasična fizika

U klasičnoj fizici su preko transformacija prostora i vremena definisane i transformacije brzine, odnosno impulsa, a preko njih su definisane i transformacije svih drugih opservabli.

  • Kvantna mehanika

U kvantnoj mehanici se simetrije drugačije pojavljuju od nalaženja u klasičnoj mehanici. Često korišćene simetrije su simetrija prostor-vremena i unutrašnje simetrije. Stanja fizičkog sistema u kvantnoj mehanici su vektori u prostoru stanja i njihove transformacije se reprezentuju unitarnim operatorima u prostoru stanja.

Formulisano preko komutatora, grupa transformacija predstavlja simetriju ukoliko svi njeni generatori komutiraju sa hamiltonijanom i tada su generatori kretanja zapravo konstante kretanja. Posledica komutacije generatora simetrije sa hamiltonijanom povlači osobinu da se hamiltonijan i podskup sačinjen od ovih generatora mogu dijagonijalizovati istovremeno. Tada svojstvena stanja generatora simetrije daju dodatne kvantne brojeve koji razlikuju stanja iste energije, odnosno uklanjaju degeneraciju, a pri tome se održavaju u vremenu.

  • Fizika elementarnih čestica

U teoriji elementarnih čestica simetrija ima ključnu ulogu, jer je na osnovu nje urađena klasifikacija čestica i određena njihova struktura i bez poznavanja njihove dinamike.

 

Reference

  1. Otkriće pozitrona, CERN timelines, pristupljeno: 27. septembar 2015.
  2. Kvantna mehanika, Maja Burić, Fizički fakultet Univerziteta u Beogradu, pristupljeno: 10. mart 2015.

Izvor: Wikipedia

Šta su u fizici simetrije?

Simetrije (fizika)

Dirak je pretpostavio da ako postoji elektron sa negativnim naelektrisanjem -e i spinom 1/2, onda postoji i čestica sa pozitivnim naelektrisanjem +e i istom vrednošću spina. Tako je teoretski na osnovu simetrije pretpostavljeno postojanje pozitrona, što je kasnije i eksperimentalno otkriveno.

Simetrije u fizici su simetrije fizičkog sistema ili fizičkog zakona i odnose se na invarijantnost ili kovarijantnost. Invarijantnost fizičkog sistema ili zakona podrazumeva njegovu nepromenljivost na transformacije. Kovarijantnost se odnosi na to da jednačine koje opisuju sistem ili zakon zadržavaju svoj oblik, tj. postoji transformacija koja rešenje jednačine u jednom koordinatnom sistemu jednoznačno prebacuje u rešenje u drugom koordinatnom sistemu.

U fizici je koncept simetrije veoma važan, jer simetrije fizičkih sistema pojednostavljuju rešavanje problema u njima. U kvantnoj fizici značaj simetrije je još veći u odnosu na klasičnu fiziku, jer uopštavanje osobina omogućava teoretsku predikciju novih fenomena. Simetrije se u fizici pronalaze u svim oblastima proučavanja i teorija simetrija ima vrlo veliku primenu za razumevanje i proučavanje.

 

Transformacija prostora

Neke od najvažnijih prostornih transformacija su prostorne inverzije (refleksije sve tri ose), prostorne translacije, rotacije. Transformacije prostora se svode na transformacije koordinatnih sistema čija je gmatematička struktura grupa. U fizici se posmatraju grupe koje pripadaju nekoj mnogostrukosti. Najprimenjenije su Lijeve grupe kod kojih su preslikavanja među elementima analitička preslikavanja, a i oblast promene parametara, odnosno mnogostrukost kojoj Lijeve grupe pripadaju je analitička.

Prostorne simetrije su one transformacije koordinata ili koordinatnih sistema pri kojim jednačine kretanja ne menjaju oblik.

 

Simetrije u različitim oblastima fizike

  • Klasična fizika

U klasičnoj fizici su preko transformacija prostora i vremena definisane i transformacije brzine, odnosno impulsa, a preko njih su definisane i transformacije svih drugih opservabli.

  • Kvantna mehanika

U kvantnoj mehanici se simetrije drugačije pojavljuju od nalaženja u klasičnoj mehanici. Često korišćene simetrije su simetrija prostor-vremena i unutrašnje simetrije. Stanja fizičkog sistema u kvantnoj mehanici su vektori u prostoru stanja i njihove transformacije se reprezentuju unitarnim operatorima u prostoru stanja.

Formulisano preko komutatora, grupa transformacija predstavlja simetriju ukoliko svi njeni generatori komutiraju sa hamiltonijanom i tada su generatori kretanja zapravo konstante kretanja. Posledica komutacije generatora simetrije sa hamiltonijanom povlači osobinu da se hamiltonijan i podskup sačinjen od ovih generatora mogu dijagonijalizovati istovremeno. Tada svojstvena stanja generatora simetrije daju dodatne kvantne brojeve koji razlikuju stanja iste energije, odnosno uklanjaju degeneraciju, a pri tome se održavaju u vremenu.

  • Fizika elementarnih čestica

U teoriji elementarnih čestica simetrija ima ključnu ulogu, jer je na osnovu nje urađena klasifikacija čestica i određena njihova struktura i bez poznavanja njihove dinamike.

 

Reference

  1. Otkriće pozitrona, CERN timelines, pristupljeno: 27. septembar 2015.
  2. Kvantna mehanika, Maja Burić, Fizički fakultet Univerziteta u Beogradu, pristupljeno: 10. mart 2015.

Izvor: Wikipedia