Najjednostavniji oblik astrofotografije bez teleskopa je pejzažna astrofotografija. Osnovno što morate imati je moderan digitalni fotoaparat, te čvrsti fotostativ. Ta oprema će vam ionako trebati za bilo kakvu kvalitetniju astrofotografiju. U ovom slučaju vam treba širokokutni objektiv, žarišne duljine 24 mm ili manje. Kraće žarišne duljine omogućiti će snimanje duljih ekspozicija, a da zvijezde ne postanu crtice zbog rotacije Zemlje oko svoje osi. Širokokutnim objektivom treba uhvatiti što veći dio noćnog neba u kombinaciji sa zanimljivim pejzažem. To mogu biti neke atraktivne građevine, ruševine, otoci u daljini ili planinski vrhovi – naravno, što dalje od umjetne rasvjete i svjetlosnog onečišćenja gradova. Sve postavke moraju biti podešene ručno, a najvažnije je pažljivo ručno izoštravanje na neku sjajnu zvijezdu koristeći “live view” na ekranu. Automatika u mrklom mraku jednostavno – ne funkcionira!
Dobre početne postavke su:
maksimalan otvor objektiva (najmanji f-broj)
vrijeme ekspozicije 15-30 sekundi (ekspozicije mogu biti dulje što je objektiv širokokutniji)
ISO 1600
obavezno spremanje fotografija u RAW formatu
Kod fotografija noćnog neba je izražen digitalni šum zbog kojeg je slika zrnata, što otežava daljnju obradu i gube se detalji. Zato se uvijek radi nekoliko uzastopnih fotografija koje se kasnije u obradi moraju registrirati (preklopiti) jedna preko druge, te uprosječiti kako bi se šum smanjio. Registracija je vrlo važna jer se položaji zvijezda na svim fotografijama moraju točno podudarati. Šum je na pojedinačnim fotografijama uvijek malo drukčiji, pa kad se uprosječi nekoliko fotografija (u slučaju pejzažne astrofotografije dovoljno ih je 10-20) dobijemo znatno “čišću” fotografiju.
Za takvu obradu pejzažnih astrofotografija najčešće se koristi besplatni program Sequator. Na gornjem primjeru (izrez fotografije na 100% veličine) možete primjetiti kako se s 30 sekundi ekspozicije i 20 mm širokokutnim objektivom već vide tragovi zbog rotacije Zemlje. To se definitivno neće vidjeti na slikama pripremljenim za internet i društvene mreže, pa čak niti fotografije izrađene na papiru većih formata se neće gledati iz tolike blizine da bi tragovi smetali ukupnom dojmu. Alternativno, ekspozicija bi se mogla smanjiti na 20 sekundi.
Kako možemo dobiti detaljnije fotke?
OK, pejzažna astrofotografija je cool, ali na njima se vide “samo” sjajnija zviježđa i Mliječni put, a vi zapravo želite detaljnije fotke maglica i galaksija? Vjerovali ili ne, za tu namjenu se i dalje mogu koristiti fotografski objektivi (ili čak mali teleskopi specijalizirani za tu namjenu!) koji će nam omogućiti detaljniji pogled u svemirska prostranstva – bez komplikacija s velikim teleskopima i teškim astronomskim montažama. Ovdje se već govori o “pravoj” astrofotografiji gdje je potrebno koristiti motoriziranu montažu koja će kompenzirati rotaciju noćnog neba, tako da na fotografiji zvijezde ne budu izdužene crtice. Takve male motorizirane montaže se nazivaju “trackeri” – kompaktne su da mogu stati u ruksak ili foto torbu i mogu se postaviti na standardne fotostative. Na trackerima se najčešće koriste objektivi žarišnih duljina od 50 do 200 mm žarišne duljine. Žarišne duljine teleskopa su najčešće od 500 mm na više.
Zvijezde se prividno gibaju kružno oko sjevernog nebeskog pola koji se nalazi u blizini Sjevernjače. Da bi trackeri mogli precizno pratiti gibanje zvijezda, mora ih se precizno i usjeveriti. U tome im pomaže polarni tražilac. Što je preciznije usjeveravanje, biti će moguće snimati dulje ekspozicije i koristiti objektive većih žarišnih duljina. Pojedinačne ekspozicije su najčešće trajanja 2-3 minute.
Jeff Berkes napravio je ovu sliku Jupitera, Venere i Mjeseca u West Chesteru, PA, 26. februara 2012. Kredit: Jeff Berkes
Zvijezde čine vlastito svjetlo, baš kao i naše Sunce (Sunce je zvijezda – najbliža zvijezda na Zemlji). Ali one su vrlo, vrlo daleko od našeg Sunčevog sustava pa nam se čini da su vrlo male, iako gledano iz blizine one su ogromne.
Planete su mnogo bliže, unutar našeg Sunčevog sustava. Iako su planeti znatno manji od zvijezda, čini se da su planeti otprilike iste veličine kao i zvijezde jer su tako blizu nama.
Planeti ne proizvode vlastito svjetlo. Oni odražavaju svjetlost Sunca na isti način na koji naš Mjesec odražava Sunčevu svjetlost.
Planetologija je znanost o planetima, mjesecima i planetarnim sustavima, posebice onome u Sunčevu sustavu. Ona proučava objekte veličine od mikrometeoroida do plinovitih divova s ciljem određivanja njihova sastava, dinamike, formacije, međuodnosa i povijesti. Ona je snažno interdisciplinarno polje koje originalno potječe iz astronomije i geoznanosti, te danas inkorporira mnoge discipline uključujući planetarnu astronomiju, planetarnu geologiju (zajedno s geokemijom, geofizikom i geomorfologijom s primjenom na planete), aerologiju, teoretsku planetologiju, te istraživanje ekstrasolarnih planeta. Srodne su joj discipline svemirska fizika, kada se govori o učincima Sunca na tijela Sunčeva sustava, te astrobiologija.
Fotografija s orbitalne jedinice Apollo 15 koja prikazuje brazde u blizini kratera Aristarha na Mjesecu. Raspored dviju dolina vrlo je sličan, iako odgovaraju samo jednoj trećini veličine, Velikoj mađarskoj ravnici kojom teku Dunav i Tisa.
U planetologiji postoje međusobno povezane opservacijske i teoretske grane. Opservacijska istraživanja uključuju kombinaciju svemirskih istraživanja, pretežito misija robotskih svemirskih letjelica koje se koriste daljinskim istraživanjima, te komparativnog, laboratorijskog rada u zemaljskim laboratorijima. Teoretska komponenta uključuje značajan dio računalne simulacije i matematičkog modeliranja.
Planetolozi obično rade na astronomskim i fizičkim ili geoznanstvenim odsjecima sveučilišta ili istraživačkih centara, iako postoji nekoliko čisto planetoloških instituta diljem svijeta. Svake godine se održava nekoliko većih konferencija te se objavljuje širok raspon stručnih časopisa.
Povijest
Za povijest planetologije može se reći da je započela sa starogrčkim filozofom Demokritom koji je prema Hipolitu izjavio:
“Uređeni su svjetovi bezgranični i različite veličine, a u nekima ne postoji niti sunce niti mjesec, dok su u drugima oni mnogo veći nego kod nas, a zajedno s drugima mnogobrojniji. I da intervali između uređenih svjetova nisu jednaki, ovdje više a ondje manje, neki se povećavaju, drugi cvjetaju, treći se raspadaju, dok ovdje oni nastaju, ondje odlaze u sjenu. Ali to da budu razoreni sudarajući se jedni s drugima. I da su neki uređeni svjetovi ogoljeni bez životinja i biljaka i sve vode.”
U modernim vremenima planetologija je nastala u astronomiji iz stuija neriješenih planeta. U tom smislu originalni planetarni astronom bio bi Galileo koji je otkrio četiri najveća Jupiterova mjeseca, planine na Mjesecu, te prvi promatrao Saturnove prstenove, što su sve objekti kasnijih istraživanja. Napredak u konstrukciji teleskopa i instrumentalnoj rezoluciji postupno je omogućila rastuću identifikaciju atmosferskih i površinskih detalja planeta. Mjesec je u početku bio najbolje istraženo nebesko tijelo jer je uvijek pokazivao detalje na svojoj površini zbog svoje blizine Zemlji, a tehnološka poboljšanja postupno su stvarala detaljnije lunarno geološko znanje. U tom znanstvenom procesu glavni su instrumenti bili astronomski optički teleskopi (te kasnije radioteleskopi) i konačno robotske istraživačke svemirske letjelice.
Solarni sustav sada je relativno dobro proučen, a također postoji sveukupno dobro razumijevanje formacije i evolucije ovog planetarnog sustava. Ipak, postoji velik broj neriješenih pitanja[2], a stopa novih otkrića je vrlo visoka djelomično zbog velikog broja interplanetarnih svemirskih letjelica koje trenutačno istražuju Sunčev sustav.
Discipline
Planetarna astronomija
Ovo je istovremeno opservacijska i teoretska znanost. Opservacijski istraživači predominantno se bave proučavanjem malenih tijela Sunčeva sustava: onih koji se mogu opservirati teleskopima, optičkim ili radijskim, tako da se mogu determinirati karakteristike ovih tijela kao što su oblik, spin, površinski materijali i erozija, te razumjeti povijest njihove formacije i evolucije.
Teoretska planetarna astronomija bavi se dinamikom: aplikacijom principa nebeske mehanike na Sunčev sustav i ekstrasolarne planetarne sustave.
Planetarna geologija
Najpoznatiji istraživačke teme planetarne geologije bave se planetarnim tijelima u neposrednoj blizini Zemlje: Mjesecom, te dvama susjednim planetima: Venerom i Marsom. Od njih prvi je proučen Mjesec uporabom metoda prethodno razvijenih na Zemlji.
Geomorfologija
Geomorfologija proučava obilježja na planetarnim površinima i rekonstruira povijest njihove formacije zaključujući o fizičkim procesima koji su djelovali na površini. Planetarna geomorfologija uključuje proučavanje nekoliko razreda površinskih obilježja: impaktirana obilježja (višeprstenasti bazeni, krateri) vulkanska i tektonska obilježja (tokovi lave, fisure, brazde) svemirska erozija – erozijski efekti generirani oštrom okolinom svemira (kontinuirano bombardiranje mikrometeoritima, visokoenergetska čestična kiša, impaktirano vrtlarstvo). Primjerice, tanak pokrov prašine na površini lunarnog regolita rezultat je bombardiranja mikrometeorita. Hidrološka obilježja: tekućina može biti sastavljena od vode do ugljikovodika i amonijaka ovisno o lokaciji u Sunčevu sustavu.
Povijest planetarne površine može se dešifrirati kartiranjem obilježja od vrha prema dnu prema njihovoj depozicijskoj sekvenciji kao što je to na terestričkim slojevima prvi učinio Nicolas Steno. Primjerice, stratigrafsko kartiranje pripremilo je astronaute s Apolla za polje geologije koje su susreli na svojim lunarnim misijama. Preklapajuće sekvencije identificirane su na slikama koje su snimljene u programu Lunar Orbiter, a zatim su korištene za pripremu lunarne stratigrafske kolumne i geološke karte Mjeseca.
Kozmokemija, geokemija i petrologija
Jedan od glavnih problema pri stvaranju hipoteza o formaciji i evoluciji objekata u Sunčevu sustavu jest nedostatak uzoraka koji se mogu analizirati u laboratoriju gdje je dostupan velik broj alata, te čitav korpus znanja proistekao iz terestričke geologije. Na sreću izravni uzorci s Mjeseca, asteroida i Marsa prisutni su na Zemlji tako što su napustili svoja izvorna tijela i dospijeli na nju u obliku meteorita. Neki su pretrpjeli kontaminaciju zbog oksidirajućeg efekta Zemljine atmosfere i infiltraciju biosfere, no meteoriti prikupljeni u proteklih nekoliko desetljeća s Antarktike gotovo su u potpunosti izvorni.
Različiti tipovi meteorita koji potječu iz asteroidnog pojasa pokrivaju gotovo sve dijelove strukture diferenciranih tijela: postoje čak meteoriti koji dolaze s granice jezgre i omotača (palaziti). Kombinacija geokemije i opservacijske astronomije također je učinila mogućim praćenje HED meteorita do specifičnog asteroida u glavnom pojasu, 4 Vesta.
Relativno malo poznatih Marsovskih meteorita pružilo je uvid u geokemijski sastav Marsovske kore, iako je neizbježan nedostatak informacija o njihovim točkama podrijetla na raznolikoj Marsovskoj površini značio da oni ne pružaju detaljnije prepreke teorijama evolucije Marsovske litosfere. Do 2008. godine identificirano je oko 50 Marsovskih meteorita.
Tijekom ere Apolla, u programu Apollo prikupljeno je i na Zemlju transportirano 384 kilograma lunarnih uzoraka, a 3 sovjetska robota Luna također je donijelo uzorke regolita s Mjeseca. Ovi uzorci pružaju obuhvatniji zapis o sastavu bilo kojeg tijela u Sunčevu sustavu osim Zemlje. Do 2008. godine bilo je poznato oko 100 parnih lunarnih meteorita.
Geofizika
Svemirske sonde omogućile su prikupljanje podataka ne samo vidljive u vidljivom spektru, već i u ostalim područjima elektromagnetskog spektra. Planeti se mogu karakterizirati prema poljima sile: gravitaciji i njihovim magnetskim poljima koje proučavaju geofizika i svemirska fizika.
Mjerenje promjena u akceleraciji svemirske letjelice u orbiti omogućilo je kartiranje finih detalja o gravitacijskim poljima planeta. Primjerice, u 1970-ima smetnje u gravitacijskom polju iznad lunarnih mora mjerili su lunarni orbiteri što je dovelo do otkrića o masenim koncentracijama, maskonima, ispod bazena Imbrium, Serenitatis, Crisium, Nectaris i Humorum.
Prepreku solarnom vjetru čini magnetosfera (nije u mjerilu)
Ako je planetarno magnetsko polje dovoljno snažno, njegova interakcija sa solarnim vjetrom formira magnetosferu oko planeta. Rane svemirske sonde otkrile su ogromne dimenzije terestričkog magnetskog polja koje se prostire oko 10 Zemljinih radijusa prema Suncu. Solarni vjetar, tok nabijenih čestica, kreće se izvan i oko terestričkog magnetskog polja i nastavlja se iza magnetskog repa, stotinama Zemljinih radijusa niz smjer širenja. Unutar magnetosfere postoje relativno guste regije čestica solarnog vjetra što se naziva Van Allenovim radijacijskim pojasima.
Atmosferska znanost
Pojasi oblaka jasno vidljivi na Jupiteru.
Atmosfera je važna tranzicijska zona između solidne planetarne površine i viših razrijeđenih ionizirajućih i radijacijskih pojaseva. Nemaju svi planeti atmosferu: postojanje atmosfere ovisi o masi planeta, te udaljenosti planeta od Sunca – na velikim udaljenostima pojavljuju se smrznute atmosfere. Osim četiriju plinovitih divovskih planeta, gotovo svi terestrički planeti (Zemlja, Venera i Mars) imaju poprilične atmosfere. Dva mjeseca imaju također značajne atmosfere: Saturnov mjesec Titan i Neptunov mjesec Triton. Tanka atmosfera postoji oko Merkura.
Efekti stope rotacije planeta oko svoje osi mogu se vidjeti u atmosferskim tokovima i strujama. Viđeni iz svemira ova se obilježja prikazuju kao pojasi i vrtlozi u sustavu oblaka, te se posebice vide na Jupiteru i Saturnu.
Komparativna planetologija
Planetologija često koristi metodu usporedbe radi boljeg razumijevanja predmeta istraživanja. To može uključivati usporedbu gustih atmosfera Zemlje i Saturnova mjeseca Titana, evoluciju objekata vanjskog Sunčeva sustava na različitim udaljenostima od Sunca ili geomorfologiju površina terestričkih planeta.
Glavna usporedba koja se može napraviti jest ona s obilježjima na Zemlji jer su ona mnogo pristupačnija i omogućuju vršenje mjerenja puno većih razmjera. Analogni studiji Zemlje posebice su uobičajeni u planetarnoj geologiji, geomorfologiji te također atmosferskoj znanosti.
Terminologija
Kada se pojedina disciplina bavi istraživanjem samo jednog nebeskog tijela onda se koristi specijalizirani termin prikazan u donjoj tablici (trenutačno su u uobičajenoj uporabi samo heliologija, geologija, selenologija i areologija):
Hippolytus (Antipope); Francis Legge, Origen (1921). Philosophumena, Original from Harvard University.: Society for promoting Christian knowledge. Pristupljeno Digitized May 9, 2006.
Stern, Alan. Ten Things I Wish We Really Knew In Planetary Science. pristupljeno 2009-05-22
Preporuka za čitanje
Basilevsky, A. T.,& J. W. Head (1995): Regional and global stratigraphy of Venus: a preliminary assessment and implications for the geological history of Venus Planetary and Space Science 43/12, pp. 1523-1553
Basilevsky, A. T.,& J. W. Head (1998): The geologic history of Venus: A stratigraphic view JGR-Planets Vol. 103 , No. E4 , p. 8531
Basilevsky, A. T.,& J. W. Head (2002): Venus: Timing and rates of geologic activity Geology; November 2002; v. 30; no. 11; p. 1015–1018;
Frey, H. V., E. L. Frey, W. K. Hartmann & K. L. T. Tanaka (2003): Evidence for buried “Pre-Noachian” crust pre-dating the oldest observed surface units on Mars Lunar and Planetary Science XXXIV 1848
Gradstein, F. M., James G. Ogg, Alan G. Smith, Wouter Bleeker & Lucas J. Lourens (2004): A new Geologic Time Scale, with special reference to Precambrian and Neogene Episodes, Vol. 27, no. 2.
Hansen V. L. & Young D. A. (2007): Venus’s evolution: A synthesis. Special Paper 419: Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst: Vol. 419, No. 0 pp. 255–273.
Hartmann, W. K. & Neukum, G. (2001): Cratering Chronology and the Evolution of Mars. Space Science Reviews, 96, 165–194.
Hartman, W. K. (2005): Moons and Planets. 5th Edition. Thomson Brooks/Cole.
Head J. W. & Basilevsky, A. T (1999): A model for the geological history of Venus from stratigraphic relationship: comparison geophysical mechanisms LPSC XXX #1390
Mutch T.A., Arvidson R., Head J., Jones K.,& Saunders S. (1977): The Geology of Mars Princeton University Press
Offield, T. W. & Pohn, H. A. (1970): Lunar crater morphology and relative-age determiantion of lunar geologic units U.S. Geol. Survey Prof. Paper No. 700-C. pp. C153-C169. Washington;
Phillips, R. J., R. F. Raubertas, R. E. Arvidson, I. C. Sarkar, R. R. Herrick, N. Izenberg, and R. E. Grimm (1992): Impact craters and Venus resurfacing history, J. Geophys. Res., 97, 15,923-15,948
Scott, D. H. & Carr, M. H. (1977): The New Geologic Map of Mars (1:25 Million Scale). Technical report.
Scott, D. H. & Tanaka, K. L. (1986): Geological Map of the Western Equatorial Region of Mars (1:15,000,000), USGS.
Shoemaker, E.M., & Hackman, R.J., (1962):, Stratigraphic basis for a lunar time scale, in *Kopal, Zdenek, and Mikhailov, Z.K., eds., (1960): The Moon — Intern. Astronom. Union Symposium 14, Leningrad, 1960, Proc.: New York, Academic Press, p. 289- 300.
Spudis, P.D. & J.E. Guest, (1988):. Stratigraphy and geologic history of Mercury, in Mercury, F. Vilas, C.R. Chapman, and M.S. Matthews, eds., Univ. of Arizona Press, Tucson, pp. 118-164.
Spudis, P. D.& Strobell, M. E. (1984): New Identification of Ancient Multi-Ring Basins on Mercury and Implications for Geologic Evolution. LPSC XV, P. 814-815
Spudis, P. (2001): The geological history of mercury. Mercury: Space Environment, Surface, and Interior, LPJ Conference, #8029.
Tanaka K. L. (ed.) (1994): The Venus Geologic Mappers’ Handbook. Second Edition. Open–File Report 94-438 NASA.
Tanaka K. L. 2001: The Stratigraphy of Mars LPSC 32, #1695, http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1695.pdf
Tanaka K. L. & J. A. Skinner (2003): Mars: Updating geologic mapping approaches and the formal stratigraphic scheme. Sixth International Conference on Mars #3129
Wagner R. J., U. Wolf, & G. Neukum (2002): Time-stratigraphy and impact cratering chronology of Mercury. Lunar and Planetary Science XXXIII 1575
Wilhelms D. E. (1970): Summary of Lunar Stratigraphy — Telescopic Observations. U.S. Geol. Survey Prof. Papers No. 599-F., Washington;
Wilhelms D. (1987): Geologic History of the Moon, US Geological Survey Professional Paper 1348, http://ser.sese.asu.edu/GHM/
Wilhelms D. E.& McCauley J. F. (1971): Geologic Map of the Near Side of the Moon. USGS Maps No. I-703, Washington;
Planetologija je znanost o planetima, mjesecima i planetarnim sustavima, posebice onome u Sunčevu sustavu. Ona proučava objekte veličine od mikrometeoroida do plinovitih divova s ciljem određivanja njihova sastava, dinamike, formacije, međuodnosa i povijesti. Ona je snažno interdisciplinarno polje koje originalno potječe iz astronomije i geoznanosti, te danas inkorporira mnoge discipline uključujući planetarnu astronomiju, planetarnu geologiju (zajedno s geokemijom, geofizikom i geomorfologijom s primjenom na planete), aerologiju, teoretsku planetologiju, te istraživanje ekstrasolarnih planeta. Srodne su joj discipline svemirska fizika, kada se govori o učincima Sunca na tijela Sunčeva sustava, te astrobiologija.
Fotografija s orbitalne jedinice Apollo 15 koja prikazuje brazde u blizini kratera Aristarha na Mjesecu. Raspored dviju dolina vrlo je sličan, iako odgovaraju samo jednoj trećini veličine, Velikoj mađarskoj ravnici kojom teku Dunav i Tisa.
U planetologiji postoje međusobno povezane opservacijske i teoretske grane. Opservacijska istraživanja uključuju kombinaciju svemirskih istraživanja, pretežito misija robotskih svemirskih letjelica koje se koriste daljinskim istraživanjima, te komparativnog, laboratorijskog rada u zemaljskim laboratorijima. Teoretska komponenta uključuje značajan dio računalne simulacije i matematičkog modeliranja.
Planetolozi obično rade na astronomskim i fizičkim ili geoznanstvenim odsjecima sveučilišta ili istraživačkih centara, iako postoji nekoliko čisto planetoloških instituta diljem svijeta. Svake godine se održava nekoliko većih konferencija te se objavljuje širok raspon stručnih časopisa.
Povijest
Za povijest planetologije može se reći da je započela sa starogrčkim filozofom Demokritom koji je prema Hipolitu izjavio:
“Uređeni su svjetovi bezgranični i različite veličine, a u nekima ne postoji niti sunce niti mjesec, dok su u drugima oni mnogo veći nego kod nas, a zajedno s drugima mnogobrojniji. I da intervali između uređenih svjetova nisu jednaki, ovdje više a ondje manje, neki se povećavaju, drugi cvjetaju, treći se raspadaju, dok ovdje oni nastaju, ondje odlaze u sjenu. Ali to da budu razoreni sudarajući se jedni s drugima. I da su neki uređeni svjetovi ogoljeni bez životinja i biljaka i sve vode.”
U modernim vremenima planetologija je nastala u astronomiji iz stuija neriješenih planeta. U tom smislu originalni planetarni astronom bio bi Galileo koji je otkrio četiri najveća Jupiterova mjeseca, planine na Mjesecu, te prvi promatrao Saturnove prstenove, što su sve objekti kasnijih istraživanja. Napredak u konstrukciji teleskopa i instrumentalnoj rezoluciji postupno je omogućila rastuću identifikaciju atmosferskih i površinskih detalja planeta. Mjesec je u početku bio najbolje istraženo nebesko tijelo jer je uvijek pokazivao detalje na svojoj površini zbog svoje blizine Zemlji, a tehnološka poboljšanja postupno su stvarala detaljnije lunarno geološko znanje. U tom znanstvenom procesu glavni su instrumenti bili astronomski optički teleskopi (te kasnije radioteleskopi) i konačno robotske istraživačke svemirske letjelice.
Solarni sustav sada je relativno dobro proučen, a također postoji sveukupno dobro razumijevanje formacije i evolucije ovog planetarnog sustava. Ipak, postoji velik broj neriješenih pitanja[2], a stopa novih otkrića je vrlo visoka djelomično zbog velikog broja interplanetarnih svemirskih letjelica koje trenutačno istražuju Sunčev sustav.
Discipline
Planetarna astronomija
Ovo je istovremeno opservacijska i teoretska znanost. Opservacijski istraživači predominantno se bave proučavanjem malenih tijela Sunčeva sustava: onih koji se mogu opservirati teleskopima, optičkim ili radijskim, tako da se mogu determinirati karakteristike ovih tijela kao što su oblik, spin, površinski materijali i erozija, te razumjeti povijest njihove formacije i evolucije.
Teoretska planetarna astronomija bavi se dinamikom: aplikacijom principa nebeske mehanike na Sunčev sustav i ekstrasolarne planetarne sustave.
Planetarna geologija
Najpoznatiji istraživačke teme planetarne geologije bave se planetarnim tijelima u neposrednoj blizini Zemlje: Mjesecom, te dvama susjednim planetima: Venerom i Marsom. Od njih prvi je proučen Mjesec uporabom metoda prethodno razvijenih na Zemlji.
Geomorfologija
Geomorfologija proučava obilježja na planetarnim površinima i rekonstruira povijest njihove formacije zaključujući o fizičkim procesima koji su djelovali na površini. Planetarna geomorfologija uključuje proučavanje nekoliko razreda površinskih obilježja: impaktirana obilježja (višeprstenasti bazeni, krateri) vulkanska i tektonska obilježja (tokovi lave, fisure, brazde) svemirska erozija – erozijski efekti generirani oštrom okolinom svemira (kontinuirano bombardiranje mikrometeoritima, visokoenergetska čestična kiša, impaktirano vrtlarstvo). Primjerice, tanak pokrov prašine na površini lunarnog regolita rezultat je bombardiranja mikrometeorita. Hidrološka obilježja: tekućina može biti sastavljena od vode do ugljikovodika i amonijaka ovisno o lokaciji u Sunčevu sustavu.
Povijest planetarne površine može se dešifrirati kartiranjem obilježja od vrha prema dnu prema njihovoj depozicijskoj sekvenciji kao što je to na terestričkim slojevima prvi učinio Nicolas Steno. Primjerice, stratigrafsko kartiranje pripremilo je astronaute s Apolla za polje geologije koje su susreli na svojim lunarnim misijama. Preklapajuće sekvencije identificirane su na slikama koje su snimljene u programu Lunar Orbiter, a zatim su korištene za pripremu lunarne stratigrafske kolumne i geološke karte Mjeseca.
Kozmokemija, geokemija i petrologija
Jedan od glavnih problema pri stvaranju hipoteza o formaciji i evoluciji objekata u Sunčevu sustavu jest nedostatak uzoraka koji se mogu analizirati u laboratoriju gdje je dostupan velik broj alata, te čitav korpus znanja proistekao iz terestričke geologije. Na sreću izravni uzorci s Mjeseca, asteroida i Marsa prisutni su na Zemlji tako što su napustili svoja izvorna tijela i dospijeli na nju u obliku meteorita. Neki su pretrpjeli kontaminaciju zbog oksidirajućeg efekta Zemljine atmosfere i infiltraciju biosfere, no meteoriti prikupljeni u proteklih nekoliko desetljeća s Antarktike gotovo su u potpunosti izvorni.
Različiti tipovi meteorita koji potječu iz asteroidnog pojasa pokrivaju gotovo sve dijelove strukture diferenciranih tijela: postoje čak meteoriti koji dolaze s granice jezgre i omotača (palaziti). Kombinacija geokemije i opservacijske astronomije također je učinila mogućim praćenje HED meteorita do specifičnog asteroida u glavnom pojasu, 4 Vesta.
Relativno malo poznatih Marsovskih meteorita pružilo je uvid u geokemijski sastav Marsovske kore, iako je neizbježan nedostatak informacija o njihovim točkama podrijetla na raznolikoj Marsovskoj površini značio da oni ne pružaju detaljnije prepreke teorijama evolucije Marsovske litosfere. Do 2008. godine identificirano je oko 50 Marsovskih meteorita.
Tijekom ere Apolla, u programu Apollo prikupljeno je i na Zemlju transportirano 384 kilograma lunarnih uzoraka, a 3 sovjetska robota Luna također je donijelo uzorke regolita s Mjeseca. Ovi uzorci pružaju obuhvatniji zapis o sastavu bilo kojeg tijela u Sunčevu sustavu osim Zemlje. Do 2008. godine bilo je poznato oko 100 parnih lunarnih meteorita.
Geofizika
Svemirske sonde omogućile su prikupljanje podataka ne samo vidljive u vidljivom spektru, već i u ostalim područjima elektromagnetskog spektra. Planeti se mogu karakterizirati prema poljima sile: gravitaciji i njihovim magnetskim poljima koje proučavaju geofizika i svemirska fizika.
Mjerenje promjena u akceleraciji svemirske letjelice u orbiti omogućilo je kartiranje finih detalja o gravitacijskim poljima planeta. Primjerice, u 1970-ima smetnje u gravitacijskom polju iznad lunarnih mora mjerili su lunarni orbiteri što je dovelo do otkrića o masenim koncentracijama, maskonima, ispod bazena Imbrium, Serenitatis, Crisium, Nectaris i Humorum.
Prepreku solarnom vjetru čini magnetosfera (nije u mjerilu)
Ako je planetarno magnetsko polje dovoljno snažno, njegova interakcija sa solarnim vjetrom formira magnetosferu oko planeta. Rane svemirske sonde otkrile su ogromne dimenzije terestričkog magnetskog polja koje se prostire oko 10 Zemljinih radijusa prema Suncu. Solarni vjetar, tok nabijenih čestica, kreće se izvan i oko terestričkog magnetskog polja i nastavlja se iza magnetskog repa, stotinama Zemljinih radijusa niz smjer širenja. Unutar magnetosfere postoje relativno guste regije čestica solarnog vjetra što se naziva Van Allenovim radijacijskim pojasima.
Atmosferska znanost
Pojasi oblaka jasno vidljivi na Jupiteru.
Atmosfera je važna tranzicijska zona između solidne planetarne površine i viših razrijeđenih ionizirajućih i radijacijskih pojaseva. Nemaju svi planeti atmosferu: postojanje atmosfere ovisi o masi planeta, te udaljenosti planeta od Sunca – na velikim udaljenostima pojavljuju se smrznute atmosfere. Osim četiriju plinovitih divovskih planeta, gotovo svi terestrički planeti (Zemlja, Venera i Mars) imaju poprilične atmosfere. Dva mjeseca imaju također značajne atmosfere: Saturnov mjesec Titan i Neptunov mjesec Triton. Tanka atmosfera postoji oko Merkura.
Efekti stope rotacije planeta oko svoje osi mogu se vidjeti u atmosferskim tokovima i strujama. Viđeni iz svemira ova se obilježja prikazuju kao pojasi i vrtlozi u sustavu oblaka, te se posebice vide na Jupiteru i Saturnu.
Komparativna planetologija
Planetologija često koristi metodu usporedbe radi boljeg razumijevanja predmeta istraživanja. To može uključivati usporedbu gustih atmosfera Zemlje i Saturnova mjeseca Titana, evoluciju objekata vanjskog Sunčeva sustava na različitim udaljenostima od Sunca ili geomorfologiju površina terestričkih planeta.
Glavna usporedba koja se može napraviti jest ona s obilježjima na Zemlji jer su ona mnogo pristupačnija i omogućuju vršenje mjerenja puno većih razmjera. Analogni studiji Zemlje posebice su uobičajeni u planetarnoj geologiji, geomorfologiji te također atmosferskoj znanosti.
Terminologija
Kada se pojedina disciplina bavi istraživanjem samo jednog nebeskog tijela onda se koristi specijalizirani termin prikazan u donjoj tablici (trenutačno su u uobičajenoj uporabi samo heliologija, geologija, selenologija i areologija):
Hippolytus (Antipope); Francis Legge, Origen (1921). Philosophumena, Original from Harvard University.: Society for promoting Christian knowledge. Pristupljeno Digitized May 9, 2006.
Stern, Alan. Ten Things I Wish We Really Knew In Planetary Science. pristupljeno 2009-05-22
Preporuka za čitanje
Basilevsky, A. T.,& J. W. Head (1995): Regional and global stratigraphy of Venus: a preliminary assessment and implications for the geological history of Venus Planetary and Space Science 43/12, pp. 1523-1553
Basilevsky, A. T.,& J. W. Head (1998): The geologic history of Venus: A stratigraphic view JGR-Planets Vol. 103 , No. E4 , p. 8531
Basilevsky, A. T.,& J. W. Head (2002): Venus: Timing and rates of geologic activity Geology; November 2002; v. 30; no. 11; p. 1015–1018;
Frey, H. V., E. L. Frey, W. K. Hartmann & K. L. T. Tanaka (2003): Evidence for buried “Pre-Noachian” crust pre-dating the oldest observed surface units on Mars Lunar and Planetary Science XXXIV 1848
Gradstein, F. M., James G. Ogg, Alan G. Smith, Wouter Bleeker & Lucas J. Lourens (2004): A new Geologic Time Scale, with special reference to Precambrian and Neogene Episodes, Vol. 27, no. 2.
Hansen V. L. & Young D. A. (2007): Venus’s evolution: A synthesis. Special Paper 419: Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst: Vol. 419, No. 0 pp. 255–273.
Hartmann, W. K. & Neukum, G. (2001): Cratering Chronology and the Evolution of Mars. Space Science Reviews, 96, 165–194.
Hartman, W. K. (2005): Moons and Planets. 5th Edition. Thomson Brooks/Cole.
Head J. W. & Basilevsky, A. T (1999): A model for the geological history of Venus from stratigraphic relationship: comparison geophysical mechanisms LPSC XXX #1390
Mutch T.A., Arvidson R., Head J., Jones K.,& Saunders S. (1977): The Geology of Mars Princeton University Press
Offield, T. W. & Pohn, H. A. (1970): Lunar crater morphology and relative-age determiantion of lunar geologic units U.S. Geol. Survey Prof. Paper No. 700-C. pp. C153-C169. Washington;
Phillips, R. J., R. F. Raubertas, R. E. Arvidson, I. C. Sarkar, R. R. Herrick, N. Izenberg, and R. E. Grimm (1992): Impact craters and Venus resurfacing history, J. Geophys. Res., 97, 15,923-15,948
Scott, D. H. & Carr, M. H. (1977): The New Geologic Map of Mars (1:25 Million Scale). Technical report.
Scott, D. H. & Tanaka, K. L. (1986): Geological Map of the Western Equatorial Region of Mars (1:15,000,000), USGS.
Shoemaker, E.M., & Hackman, R.J., (1962):, Stratigraphic basis for a lunar time scale, in *Kopal, Zdenek, and Mikhailov, Z.K., eds., (1960): The Moon — Intern. Astronom. Union Symposium 14, Leningrad, 1960, Proc.: New York, Academic Press, p. 289- 300.
Spudis, P.D. & J.E. Guest, (1988):. Stratigraphy and geologic history of Mercury, in Mercury, F. Vilas, C.R. Chapman, and M.S. Matthews, eds., Univ. of Arizona Press, Tucson, pp. 118-164.
Spudis, P. D.& Strobell, M. E. (1984): New Identification of Ancient Multi-Ring Basins on Mercury and Implications for Geologic Evolution. LPSC XV, P. 814-815
Spudis, P. (2001): The geological history of mercury. Mercury: Space Environment, Surface, and Interior, LPJ Conference, #8029.
Tanaka K. L. (ed.) (1994): The Venus Geologic Mappers’ Handbook. Second Edition. Open–File Report 94-438 NASA.
Tanaka K. L. 2001: The Stratigraphy of Mars LPSC 32, #1695, http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1695.pdf
Tanaka K. L. & J. A. Skinner (2003): Mars: Updating geologic mapping approaches and the formal stratigraphic scheme. Sixth International Conference on Mars #3129
Wagner R. J., U. Wolf, & G. Neukum (2002): Time-stratigraphy and impact cratering chronology of Mercury. Lunar and Planetary Science XXXIII 1575
Wilhelms D. E. (1970): Summary of Lunar Stratigraphy — Telescopic Observations. U.S. Geol. Survey Prof. Papers No. 599-F., Washington;
Wilhelms D. (1987): Geologic History of the Moon, US Geological Survey Professional Paper 1348, http://ser.sese.asu.edu/GHM/
Wilhelms D. E.& McCauley J. F. (1971): Geologic Map of the Near Side of the Moon. USGS Maps No. I-703, Washington;
Mnogi objekti u svemiru nisu započeli svoje postojanje u istoj formi kao što se sada vidi – veliki objekti se obično grade iz mnogo manjih objekata, umesto da se brzo pojavljuju u punoj veličini. To važi i za galaksije i planete. Planeti u našem solarnom sistemu započeli su baš kao gomila prašine i gasa unutar većeg diska s više gasa i prašine. Ne postoji poseban razlog za pojavljivanje određenog broja ovih grudvica, i mi u potpunosti očekujemo da ih je bilo puno.
Sa puno malih grudvica, svaka od njih je mogla početi da se kreće u okolni gas i prašinu, a neke od tih prašina mogle su se zaglaviti za svaku malu gomilu. To znači da uskoro imamo vrlo sgužvan solarni sistem s puno šljunka umjesto sitne prašine, koji raste tako što se spaja s više prašine. Svaka od ovih malih stvari može postati planeta ako nastavi sakupljati više materijala, ali ovaj način sakupljanja stvari oko njih nije veoma efikasan. Ovde se takođe mješaju i zvijezde, postepeno odvodeći sve ostatke gasa koji nisu ušli u stvaranje zvezde ili stvaranje naše male planete. Ali postoji mnogo brži način rasta – sudari.
Ako svaka od ovih stvari se sudari s drugom, mogu vrlo brzo udvostručiti njihovu veličinu; I naše trenutno razumijevanje ranog solarnog sistema sugeriše da je upravo ovo način kako su te stvari porasle na približno objekte veličine planeta. Planetski kandidati koji su najbrže porasli mogli bi nastaviti da rastu do veoma velike veličine, jer bi mogli gravitirati manje objekte, na kraju ih povući u sudar. Slučajno, ovo gravitaciono pribijanje je kako mislimo da je Mars dobio svoja dva mjeseca – Phobos se kreće toliko blizu Marsa da će se na kraju ili razbiti ili srušiti na površini Marsa.
Smatra se da je naš Mesec ostatak jednog od ovih sudara između gotovo punih planeta.
Poznata kao hipoteza Velikog sudara ideja ukazuje na to da se je objekat veličine Marsa razbio od proto-Zemlju, a neki od materijala koji je otkinut sa površine Zemlje je rekombinovan kao Mesec.
Postojao je i vremenski period koji se naziva kasno teško bombardiranje u istoriji Sunčevog sistema, gde su sva tela Sunčevog sistema, uključujući i Mesec, uplavila u prilično teške tokove asteroida. Ovo je započelo pre oko 4 milijarde godina i nastavilo oko 300 miliona godina. Još uvek možemo videti tragove ovog na Mesecu – mračni krater na Mesecu vodi porijeklo iz perioda kasnog teškog bombardovanja.
Još uvek smo pogođeni stvarima koje lete oko našeg sunčevog sistema – međutim većina toga je prilično mala (na kosmičkom nivou) da je preživela ovoliko dugo, a da se već nije srušila u drugi predmet. Ovi “mali” objekti su i dalje ponekad dovoljno veliki da bi bili opasnost za život – zona smrti koja okružuje uticaj zavisi samo od toga koliko je veliki objekat.
Sve velike planete su se naselile u stabilne orbite koje se međusobno miješaju, nakon što su prošle kroz prvih 20 miliona godina haosa, pa je vrlo malo vjerovatno da će se velike planete u našem solarnom sistemu srušiti jedne u druge sve dok se dinamika Našeg solarnog sistema ne promijeni.
Svima nam je teško zamislit veličine u Svemiru, kao i veličine koje se pominju u fizici, astrofizici i astronomiji. Mi najbolje možemo zamisliti ono šta znamo iz iskustva.
Npr. svi se susrećemo svakodnevno sa veličinom lopti, automobila, kuća, zgrada, brda i planina, međutim možemo li zamisliti koliko je velika Zemlja? Najbolji način da si to zamislimo jest da zamislimo nevidljivu bakteriju na površini jabuke. To smo mi u usporedbi sa Zemljom!
Sad koliko je Zemlja velika u odnosu na Sunce? Zamislimo si fudbalsku loptu na sredini stadiona, razlika u veličini između lopte i stadiona bi odgovarala odnosu veličine Zemlje i Sunca. Sad bi mogli ići i puno dalje, ali samo naglasimo da je Sunce jedna od manjih zvijezda u Svemiru, postoje mnogo, mnogo veće zvijezde od Sunca, a Sunce je kao što smo rekli veće od Zemlje koliko je stadion veći od fudbalske lopte.
Isto tako imamo ogromne razlike ne samo u zapremini u Svemiru, nego i u udaljenosti, masi, gustoći, temperaturi itd.
tportal.hr je objavio solidan opis:
“Ako zamislimo da je Sunce veliko poput novčića penija, dakle negdje između 20 i 50 lipa, najbliža zvijezda Alpha Centauri bila bi udaljena oko 563 kilometra, malo manje od dužine ceste od Zagreba do Dubrovnika.
Svaki pokušaj da si predočimo udaljenosti veće od ove ubrzo postaje problematičan. Primjerice, promjer Mliječne staze bio bi oko 9 460 800 000 000 kilometara, udaljenost između Zemlje i Mjeseca je oko 384 400 km. Takve nadljudske dimenzije vrlo je teško i zamisliti. No definiranje astronomskih mjernih jedinica poput svjetlosne godine, parseka ili crvenog pomaka pomaže nam da dobijemo barem neke predodžbe o njima.
Prije svega treba istaknuti da zapravo nitko ne zna točno koliko je svemir velik. Mogao bi biti beskonačan, no mogao bi i imati granice, što zapravo znači da bismo putujući pravocrtno u jednom smjeru konačno završili na mjestu s kojeg smo krenuli kao da smo putovali po površini kugle. Znanstvenici se još ne mogu složiti oko toga kakav oblik ima svemir, međutim jednu stvar možemo izračunati prilično precizno – koliko daleko možemo vidjeti. Svjetlost putuje ograničenom brzinom, a budući da je svemir star oko 13,7 milijardi godina, logično je zaključiti da su najudaljenija mjesta koja možemo vidjeti od nas udaljena 13,7 milijardi svjetlosnih godina. No to nije točno. Naime, svemir se stalno širi. Ova ekspanzija može se odvijati bilo kojom brzinom, čak i većom od brzine svjetlosti. To pak znači da su najudaljeniji objekti koje danas možemo vidjeti nekad bili mnogo bliže. Zahvaljujući ovoj ekspanziji mi zapravo možemo vidjeti objekte koji su danas od nas udaljeni više od 46 milijardi svjetlosnih godina. Mada se Zemlja ne nalazi u središtu svemira, ona je u centru njegova vidljivog dijela koji oblikuje kuglu promjera od oko 93 milijarde svjetlosnih godina.
NASA-in teleskop Hubble snimio je najudaljenije dosad otkrivene galaksije u vidljivom svemiru. Astronomi su ovu fotografiju snimili tako što su Hubble okrenuli prema malenom dijelu neba na nekoliko mjeseci i hvatali svaki sićušan foton koji je stigao. Na snimci se vidi oko 10.000 galaksija. Budući da je svjetlost do nas putovala jako dugo, mi zapravo vidimo kako su izgledale prije nekih 13 milijardi godina, nedugo nakon Velikog praska. One su danas od nas udaljene oko 30 milijardi svjetlosnih godina.
Budući da se svemir stalno širi, znanstvenici su smislili bolji način za iskazivanje najvećih udaljenosti. Naime, što je neka galaksija udaljenija, to je njezina brzina udaljavanja veća (širenje svakog dijela svemira između nas i galaksije se zbraja). Kako se galaksija udaljava od nas, valne dužine njezine svjetlosti se izdužuju pa nastaje tzv. crveni pomak – kraće valne dužine plave boje postaju duže, odnosno pomiču se prema crvenom dijelu spektra. Slično se događa kada se kola hitne pomoći udaljavaju od nas – zvuk sirene postaje niži. Prema tom sustavu mjerenja za galaksije na Hubbleovoj slici možemo reći da imaju crveni pomak od 7,9.
Znanstvenici posljednjih godina sve češće koriste i jedinicu za udaljenost koja se zove parsek (pc), a koja u stručnim krugovima sve više istiskuje svjetlosnu godinu te postaje osnovna jedinica za mjerenje udaljenosti u svemiru. Jedan parsek iznosi 3,26 svjetlosnih godina. Definiran je kao udaljenost na kojoj bi zvijezda imala paralaksu od jedne lučne sekunde. To je, dakle, udaljenost s koje se polumjer Zemljine orbite vidi pod kutom od jedne sekunde.
Najudaljeniji izvor svjetlosti u svemiru koji smo do danas uspjeli registrirati je tzv. kozmičko pozadinsko mikrovalno zračenje. To su fotoni koji su do nas putovali gotovo od samog početka stvaranja. Nedugo nakon velikog praska svemir je bio premalen i prenapučen da bi svjetlost mogla otputovati daleko prije nego što će je čestice raspršiti ili apsorbirati. No negdje oko 380 milijuna godina nakon velikog praska postao je dovoljno velik da omogući slobodno putovanje svjetlosti – postao je proziran. Tako je nastalo zračenje koje je krajnji rub ili neproziran zid koji omeđuje ono što danas možemo vidjeti.
Kako se svemir kroz 13,7 milijardi godina širio, svjetlost u njemu se jako razvukla. Mada je pozadinsko zračenje nastalo u vrijeme kada je temperatura svemira bila viša od 3000°C, ono danas ima temperaturu od samo 2,73 K, odnosno -270,3°C. Ta je temperatura vrlo jednolika, a varijacije koje se vide na slici iznose tek 1 naprama 100.000.
Dalje od pozadinskog mikrovalnog zračenja danas ne možemo vidjeti. No naši horizonti mogli bi se proširiti kada bismo uspjeli izgraditi dovoljno osjetljive detektore neutrina. Naime, neutrini, za razliku od fotona svjetlosti, gotovo nesmetano prolaze kroz materiju pa ih čestice u ranom svemiru nisu mogle raspršiti niti apsorbirati.” (1)
Dodatno, da biste dobili osjećaj koje su zapremine i udaljenosti u Svemiru u pitanju, pogledajte sljedeći video: