Centar masa
Definicija centra masa
Centar masa sustava od N čestica je točka C određena vektorom položaja
-
-
(gdje je ukupna masa sustava).
-
Pojedina čestica označena je simbolom “i” (i=1, 2, … N), tj. njezina masa je {displaystyle scriptstyle m_{i}}
Ista jednadžba može se koristiti i za određivanje centra masa sustava sastavljenog od proizvoljno velikih dijelova, ako znamo koordinate centra masa svakoga dijela. Tada je
Centar masa tijela može se opisati istom gornjom formulom ako se zamišlja da se tijelo sastoji od N čestica. U stvarnom izračunu, međutim, umjesto ogromnog broja diskretnih sastavnih čestica zamišlja se kontinuirana razdioba tijela na sve sitnije dijelove, koji se graničnim procesom prevode u diferencijalne elemente mase {displaystyle scriptstyle dm}
-
-
(gdje je ukupna masa tijela).
-
Integriranje je samo simbolički naznačeno donjim indeksom uz integral: podrazumijeva se da su to trostruki određeni integrali po cijelom volumenu (“V”) tijela, kojima se konkretne granice definiraju po vanjskoj konturi tijela. Usto se u stvarnom računu diferencijalni element mase obično opisuje pomoću gustoće ρ (koja je funkcija položaja), tj.
-
-
(gdje je ukupna masa tijela).
-
Centar masa homogenog tijela računa se samo pomoću njegovog volumena V. Budući da homogeno tijelo ima posvuda jednaku gustoću, ona se u gornjem izrazu za položaj centra masa vadi ispred integrala i pokrati s gustoćom u izrazu za masu
-
-
.
-
Obrazloženje definicije: dokaz uloge centra masa
Budući da se gibanje čestice opisuje samo jednim vektorom položaja, njezina brzina i ubrzanje mogu se jednoznačno odrediti kao prva odnosno druga derivacija toga vektora položaja po vremenu. Zato je definiranje veličina i formuliranje zakona klasične mehanike najjednostavnije i najjasnije u slučaju čestice. Primjerice, poznati i praktični oblik 2. Newtonovog aksioma (u nerelativističkoj aproksimaciji) “suma sila jednaka je umnošku mase i akceleracije” predstavlja posve jasnu tvrdnju za pojedinu česticu: radi se o sumi svih sila koje djeluju na česticu, o masi čestice, te o akceleraciji čestice koja je jasno definirana preko njezinog vektora položaja.
No, postavlja se pitanje da li je moguće te zakone i veličine na sličan način formulirati i za sustav čestica, odnosno za tijelo kao cjelinu. Za spomenuti Newtonov aksiom, na primjer, nije unaprijed jasno da li je moguće i kako treba definirati pojam “akceleracija tijela”, budući da se tijelo sastoji od mnoštva čestica koje mogu imati različite akceleracije. Pokazuje se da rješenje problema omogućuje definicija centra masa.
U tu svrhu, analiziramo tijelo kao sustav čestica: za svaku česticu napišemo jednadžbu
gdje je Fv
Na desnoj strani dobivenog izraza pojavio se zbroj umnožaka masa i akceleracija, koji nema očiglednoga smisla, ali na prvi pogled podsjeća na zbroj umnožaka masa i vektora položaja u definiciji centra masa. Jasno je da tu definiciju samo treba dva puta derivirati po vremenu da bi se od vektora položaja dobile akceleracije:
Prva od tri gornje jednadžbe je definicija centra masa za sustav od tri čestice (pomnožena s ukupnom masom, tako da na desnoj strani ostanu samo mase i vektori položaja pojedinih čestica). Njezinim deriviranjem po vremenu dobiva se druga jednadžba (vektori položaja prelaze u brzine). Svaki pribrojnik {
Posljednja u gornjoj skupini od tri analogne jednadžbe dobiva se daljnjim deriviranjem po vremenu, koje prevodi brzine u akceleracije. Ona pokazuje da je zbroj umnožaka
-
-
.
-
Dakle, zakon “suma sila jednaka je umnošku mase i akceleracije” jednako vrijedi i za cijeli sustav odnosno tijelo, samo što se tvrdnja dnosi na akceleraciju njegovog centra masa, a u sumi sila preostaju samo sile koje izvana djeluju na sustav odnosno na tijelo.
Ako takvih sila nema (ili se zbrajanjem ponište), centar masa miruje ili se giba jednoliko pravocrtno (nema akceleracije), pa je ukupna količina gibanja konstantna. Pritom se pojedine čestice ili dijelovi sustava ili tijela mogu gibati na različite druge načine, odnosno mijenjati svoje količine gibanja i imati različite akceleracije.
Primjer određivanja centra masa
Umjesto gornjih formula za centra masa, u kojima se koristi vektor položaja
-
-
.
-
Račun ilustriramo na jednostavnom primjeru: na skici desno prikazan je čekić kojemu se centar masa nalazi na osi x zbog simetričnog rasporeda masa. Na početnom dijelu osi naznačene su jedinice duljine (npr. centimetri): glava čekića mase m1=2kg ima centar masa u svojemu središtu, na koordinati x1=2cm, a drška mase m2=0,5kg na koordinati x2=6cm.
Centar masa tijela sa ovako opisanim dijelovima računa se (kako je već spomenuto) po formuli za centar masa sustava čestica, pa imamo
.
Odnos centra masa i težišta tijela
Iako među njima ima dosta sličnosti u praktičnim primjenama, u usporedbi s centrom masa pojam težišta nije tako jednoznačno definiran niti ima takav fundamentalni značaj u fizici. Već i njihove opisne definicije, “točka u kojoj kao da je sadržana sva masa tijela” (centar masa) i “točka u kojoj kao da je sadržana sva težina tijela” (težište), razotkrivaju glavne razlike i sličnosti. Za razliku od centra masa, težište ne ovisi samo o građi tijela nego i o gravitacijskom polju u kojemu se tijelo nalazi. No, u homogenom gravitacijskom polju težište tijela je ista točka kao i njegov centar masa.
Gravitacijsko polje na Zemlji skoro je sasvim homogeno, pa u većini praktičnih primjena nema potrebe u računu razlikovati težište tijela od centra masa. Primjerice, tornjevi Petronas u Maleziji visoki su oko 450 metara, a njihovo težište nalazi se samo oko 2 centimetra ispod centra masa (zato što gravitacijsko polje malo opada s visinom, pa je donja polovica mase malo teža od gornje). Stoga je sasvim razumljivo da mnogi jednostavniji tekstovi i elementarni udžbenici ne upozoravju na razliku između centra masa i težišta tijela, a neki te nazive koriste kao sinonime.
Ipak, težište tijela je konceptualno posve različit pojam od centra masa. U nehomogenom gravitacijskom polju njegov položaj nije jednoznačno povezan s tijelom: ako ga je uopće moguće definirati, položaj težišta ovisi o orijentaciji tijela u polju. Usto, čak i spomenuto malo odstupanje težišta od centra masa u približno homogenom Zemljinom polju može biti značajno kod preciznijih mjerenja. Zato su u poznatim standardnim udžbenicima iz fizike ta dva pojma jasno razdvojena.
U različitim Wikipedijama, međutim, najčešće se pojavljuje samo jedan članak, naslovljen ili kao “Težište” ili kao “Centar masa”. U nekima od tih članaka, razlika između centra masa i težišta tijela opisana je korektno, u nekima je barem spomenuta, a u nekima uopće nije.
Izvori
- središte mase, , “Hrvatska enciklopedija”, Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2015.
- Young H. D., Freedman R. A., Sears and Zemansky University Physics, Addison-Wesley, San Francisco (2004)
- Richard Feynman, The Feynman Lectures on Physics; Volume 1, Addison Wesley, U.S.A (1964)