Category Archives: Termodinamika

Entropija: Zašto se čini da život uvijek postaje komplikovaniji

Murphyjev zakon kaže: “Sve što može poći naopako, poći će naopako.”

Ova sažeta izjava upućuje na dosadnu sklonost života da stvara nevolje i otežava stvari. Čini se da problemi nastaju sami od sebe, dok rješenja uvijek zahtijevaju našu pažnju, energiju i trud. Čini se da nam život nikad ne ide samo od sebe. Ako ništa drugo, naši životi postaju složeniji i postupno padaju u nered, umjesto da ostanu jednostavni i strukturirani.

Zašto je to?

Murphyjev zakon je samo uobičajena izreka koju ljudi razbacuju u razgovoru, ali je povezan s jednom od velikih sila našeg univerzuma. Ova sila je toliko fundamentalna za način na koji naš svijet funkcionira da prožima gotovo svaki poduhvat kojim težimo. To pokreće mnoge probleme sa kojima se suočavamo i dovodi do nereda. To je jedina sila koja upravlja svačijim životom: Entropija.

Šta je Entropija i zašto je važna?
Šta je entropija? Evo jednostavnog načina da razmislite o tome:

Zamislite da uzmete kutiju dijelova slagalice i bacite ih na sto. U teoriji, moguće je da dijelovi savršeno sjednu na svoje mjesto i stvore gotovu slagalicu kada ih izbacite iz kutije. Ali u stvarnosti, to se nikada ne dešava.

Zašto?

Naprosto, jer su šanse ogromne protiv toga. Svaki komad bi morao pasti na pravo mjesto da bi se stvorila završena slagalica. Postoji samo jedno moguće stanje u kojem je svaki komad u redu, ali postoji skoro beskonačan broj stanja u kojima su dijelovi u neredu. Matematički govoreći, malo je vjerovatno da će se uredan ishod dogoditi nasumično.

Slično, ako sagradite dvorac od pijeska na plaži i vratite se nekoliko dana kasnije, više ga neće biti. Postoji samo jedna kombinacija čestica pijeska koja izgleda kao vaš pješčani dvorac. U međuvremenu, postoji gotovo beskonačan broj kombinacija koje ne izgledaju tako.

Opet, u teoriji, moguće je da vjetar i valovi pokreću pijesak okolo i stvaraju oblik vašeg pješčanog zamka. Ali u praksi se to nikada ne dešava. Šanse su astronomski veće da će se pijesak rasuti u nasumične gomile.

Ovi jednostavni primjeri prikazuju suštinu entropije. Entropija je mjera nereda. I uvijek ima mnogo više neurednih varijacija nego urednih.

Zašto je Entropija bitna za vaš život?


Evo ključne stvari o entropiji: ona se uvijek povećava tokom vremena.

Prirodna je tendencija stvari da gube red. Prepušten sam sebi, život će uvijek postati manje strukturiran. Peščani zamkovi se odnose. Korov prevladava vrtove. Drevne ruševine se ruše. Automobili počinju da rđaju. Ljudi postepeno stare. Sa dovoljno vremena, čak i planine erodiraju i njihove precizne ivice postaju zaobljene. Neizbežan trend je da stvari postaju manje organizovane.

Ovo je poznato kao Drugi zakon termodinamike. To je jedan od temeljnih koncepata hemije i jedan je od fundamentalnih zakona našeg univerzuma. Drugi zakon termodinamike kaže da se entropija zatvorenog sistema nikada neće smanjiti.

“Zakon da se entropija uvijek povećava ima, mislim, vrhovni položaj među zakonima prirode.” — Arthur Eddington


Veliki britanski naučnik Artur Edington je tvrdio: „Zakon da se entropija uvek povećava ima, mislim, vrhovni položaj među zakonima prirode. Ako vam neko ukaže da se vaša kućna teorija univerzuma ne slaže sa Maksvelovim jednačinama – utoliko gore po Maksvelove jednačine. Ako se otkrije da je to u suprotnosti sa zapažanjem – pa, ovi eksperimentalisti ponekad zabrljaju stvari. Ali ako se utvrdi da je vaša teorija protivna Drugom zakonu termodinamike, ne mogu vam dati nadu; nema ništa drugo nego srušiti se u najdubljem poniženju.”

Dugoročno gledano, ništa ne izmiče drugom zakonu termodinamike. Privlačenje entropije je nemilosrdno. Sve propada. Poremećaj se uvek povećava.

Bez napora, život teži da izgubi red


Prije nego što postanete depresivni, postoje dobre vijesti.

Možete se boriti protiv privlačenja entropije. Možete riješiti razbacanu zagonetku. Možete iščupati korov iz svog vrta. Možete očistiti neurednu sobu. Možete organizirati pojedince u kohezivni tim.

Ali budući da svemir prirodno klizi prema neredu, morate trošiti energiju da biste stvorili stabilnost, strukturu i jednostavnost.

Uspješne veze zahtijevaju brigu i pažnju. Uspješne kuće zahtijevaju čišćenje i održavanje. Uspješni timovi zahtijevaju komunikaciju i saradnju. Bez truda, stvari će propasti.

Ovaj uvid – da poremećaj ima prirodnu tendenciju da se vremenom povećava i da se toj tendenciji možemo suprotstaviti trošenjem energije – otkriva osnovnu svrhu života. Moramo uložiti napor da stvorimo korisne tipove poretka koji su dovoljno otporni da izdrže neumoljivu silu entropije.

„Krajnji cilj života, uma i ljudske težnje: raspoređivanje energije i informacija za borbu protiv plime entropije i stvaranje utočišta blagotvornog poretka.” —Steven Pinker


Održavanje organizacije u uslovima haosa nije lako. Prema riječima Yvon Chouinard-a, osnivača Patagonije, “Najteža stvar na svijetu je pojednostaviti svoj život jer vas sve vuče da budete sve složeniji.”

Entropija će se uvijek povećavati sama od sebe. Jedini način da stvari ponovo dovedu u red je dodavanje energije. Red zahteva trud.

Entropija u svakodnevnom životu
Entropija pomaže objasniti mnoge misterije i iskustva svakodnevnog života.

Na primjer:

Zašto je život izuzetan

Razmotrite ljudsko tijelo.

Kolekcija atoma koji čine vaše tijelo mogla bi biti raspoređena na gotovo beskonačan broj načina i gotovo svi oni ne vode ni do kakvog oblika života. Matematički govoreći, šanse su u velikoj mjeri protiv samog vašeg prisustva. Vi ste vrlo nevjerovatna kombinacija atoma. A ipak, tu ste. Zaista je izvanredno.

U univerzumu u kojem entropija vlada danom, prisustvo života sa takvom organizacijom, strukturom i stabilnošću je zapanjujuće.

Zašto je umjetnost lijepa

Entropija nudi dobro objašnjenje zašto su umjetnost i ljepota tako estetski ugodne. Umjetnici stvaraju formu reda i simetrije koju, vjerovatno, svemir nikada ne bi stvorio sam. To je tako rijetko u velikoj šemi mogućnosti. Broj lijepih kombinacija je daleko manji od broja ukupnih kombinacija. Slično, vidjeti simetrično lice je rijetko i lijepo kada postoji toliko mnogo načina da lice bude asimetrično.

Ljepota je rijetka i malo vjerovatna u svemiru poremećaja. I to nam daje dobar razlog da zaštitimo umjetnost. Treba da ga čuvamo i tretiramo kao nešto sveto.

Zašto je brak težak

Jedna od najpoznatijih uvodnih rečenica u književnosti dolazi iz Ane Karenjine Lava Tolstoja. On piše:

„Srećne porodice su sve slične; svaka nesretna porodica je nesretna na svoj način.”

Postoji mnogo načina na koji brak može propasti – finansijski stres, problemi sa roditeljstvom, lude tazbine, sukobi u osnovnim vrijednostima, nedostatak povjerenja, nevjera, itd. Nedostatak u bilo kojoj od ovih oblasti može uništiti porodicu.

Međutim, da biste bili sretni, potreban vam je određeni stepen uspjeha u svakom glavnom području. Dakle, sve sretne porodice su slične jer sve imaju sličnu strukturu. Poremećaj se može pojaviti na mnogo načina, ali red na samo nekoliko.

Zašto su optimalni životi dizajnirani, a ne otkriveni

Imate kombinaciju talenata, vještina i interesa koji su specifični za vas. Ali također živite u širem društvu i kulturi koji nisu dizajnirani s vašim specifičnim sposobnostima na umu. S obzirom na ono što znamo o entropiji, što mislite kolike su šanse da je okruženje u kojem odrastate također optimalno okruženje za vaše talente?

Malo je vjerovatno da će vam život predstaviti situaciju koja savršeno odgovara vašim snagama. Od svih mogućih scenarija s kojima se možete susresti, mnogo je vjerovatnije da ćete naići na onaj koji ne odgovara vašim talentima.

Evolucijski biolozi koriste termin koji se naziva “uslovi neusklađenosti” kako bi opisali kada organizam nije dobro prikladan za stanje s kojim se suočava. Imamo uobičajene fraze za neusklađenost uslova: „kao riba iz vode“ ili „donesi nož u pucnjavu“. Očigledno, kada ste u neusklađenom stanju, teže je uspjeti, biti koristan i pobijediti.

Vjerovatno ćete se suočiti sa neusklađenim uslovima u svom životu. U najmanju ruku, život neće biti optimalan – možda niste odrasli u optimalnoj kulturi za svoje interese, možda ste bili izloženi pogrešnoj temi ili sportu, možda ste rođeni u pogrešno vrijeme u istoriji. Mnogo je vjerovatnije da živite u neusklađenom stanju nego u dobro usklađenom.

Znajući to, morate uzeti na sebe da osmislite svoj idealan životni stil. Morate pretvoriti uslov neusklađenosti u dobro uparen.

Optimalni životi su dizajnirani, a ne otkriveni.

Murphyjev zakon primijenjen na univerzum


Na kraju, vratimo se Marfijevom zakonu: „Sve što može poći naopako, poći će po zlu“.

Entropija pruža dobro objašnjenje zašto se Marfijev zakon tako često pojavljuje u životu. Postoji više načina na koji stvari mogu krenuti naopako nego kako treba. Životne poteškoće ne nastaju zato što su planete pogrešno postavljene ili zato što se neka kosmička sila urotila protiv vas. To je jednostavno entropija na djelu. Kao što je jedan naučnik rekao,

“Entropija je nešto poput Marfijevog zakona primenjenog na ceo univerzum.”

Niko nije kriv što život ima problema. To je jednostavno zakon vjerovatnoće. Mnogo je neuređenih stanja, a malo uređenih. S obzirom na šanse protiv nas, ono što je izvanredno nije da život ima problema, već da ih uopće možemo riješiti.

Izvor: https://jamesclear.com/entropy

Kako preživjeti na temperaturama poviš 40 stepeni Celzijusa?

Nekoliko savjeta kako preživjeti.

  1. Nosite kapu ili šešir i pokrijte uši i lice kada je temperatura iznad 45 stepeni. Ne oblačite se u polušorc i bez rukava što znači da izlažete veći dio tijela vrućem zraku i to će brže zagrijati vaše tijelo.
  2. Popijte puno vode. Uzmite ORS ili bilo koju drugu izotoničnu tečnost da nadoknadite gubitak soli. Piće napravljeno od kuvanog sirovog manga i mente pod nazivom aam panna smatra se korisnim u severnoj Indiji za sprečavanje toplotnog udara.
  3. Nemojte ići vani praznog želudaca.
  4. Kada izađete iz zatvorenog prostora ili iz klima-uređaja, pričekajte nekoliko minuta u zasjenjenom području da vam temperatura tijela polako poraste i pustite da vaše znojne žlijezde počnu raditi.
  5. Nosite tamne nijanse (uređivanje: sunčane naočale)
  6. Ne izlazite van osim ako nije potrebno.
  7. Alkoholna pića poput hladnog piva ili otmjenih koktela izgledaju dobro samo na slikama odmarališta na plaži, Alkohol je diuretik i može vas zapravo dehidrirati pa ih treba izbjegavati u stvarno vrućim danima.

Možemo li da napravimo ‘perpetuum mobile’ pomoću magneta?

Probano je. Pogledajte da li možete uočiti nedostatak dizajna

Magnet A vuče čeličnu kuglu E uz rampu. Kada lopta E dođe do rupe B, ona pada kroz nju, kotrlja se kroz rupu F i ponovo se popne do A pa opet padne kroz rupu B i tako dalje kruži?

Problem? Ako je magnet A dovoljno jak da povuče loptu E uz rampu, bit će dovoljno jak da spriječi pad kroz rupu. Kuglica E će se jednostavno pričvrstiti za magnet A zauvijek osim ako ne uložite energiju u sistem da biste je uklonili.

Što ako koristite elektromagnet koji se isključuje i dozvoljava lopti da padne. Ne, za to bi bila potrebna energija uložena u sistem.

Barijera između B i magneta? Ne, kugla će se zalijepiti za barijeru.

Vjerovatno biste mogli napraviti super efikasnu mašinu koja je trajala dosta vremena koristeći magnete, ali takve mašine već postoje. One propadaju, samo su potrebni mjeseci ili godine. Od njih jednostavno ne možete dobiti nikakav rad.

Zapamtite! Vječni motori (perpetuum mobile) su protiv zakona fizike tj. Prvog i Drugog zakona termodinamike. Zato američki zavod za patente neće izdati patent za uređaj za vječnu mašinu (perpetuum mobile) osim ako ga prati model koji radi.

Ultra bijela boja bi mogla smanjiti potrebu za klima uređajima

USA Today piše da su naučnici s Univerziteta Purdue razvili ultra bijelu boju koja reflektira 98,1 posto sunčevih zraka dok emitira infracrveno zračenje. Zbog toga površina ostaje hladnija u odnosu na okolinu te bi nova ultra bijela boja mogla efikasno zamijeniti klima uređaje u nekim slučajevima. Ova bijela boja je dobila Guinnessov certifikat zbog svoje “rekordne bjeline”, a mnogo je efikasnija od obične boje koja zapravo zagrijava površine. Krov površine 93 kvadratna metra obojen novom bijelom bojom bi dao snagu hlađenja od 10 kW snage hlađenja, što je više u odnosu na klima uređaje koji se koriste za većinu kuća.

Danas već postoje boje koje reflektiraju toplotu, ali reflekcija sunčevih zraka ne prelazi 90 posto te ove boje ne hlade površine.

Trik je u korištenju visokog omjera barij sulfata, spoja koji se često koristi za kozmetiku i foto papir, i to u česticama različitih veličina. Širi raspon veličina čestica pomaže u raspršivanju više svjetlosnog spektra, čime se reflektira više sunčevih zraka.

Kada će se nova bijela boja pojaviti u prodaji, zasad nije poznato, ali ta namjera postoji. Patenti su već registrovani, a bijela boja bi trebala postati novo “oružje” u borbi protiv klimatskih promjena. Mogla bi eliminisati potrebu za klima uređajima u nekim domovima, posebno u toplim regijama s dosta sunčeve svjetlosti. Također, mogla bi pomoći u smanjenju emisije gasova i potrošnji energije te uštedjeti novac tokom toplih ljetnih dana.

Izvor: klix.ba

Šta su to satovi?

Prvo što treba primijetiti je da je gotovo sve sat. Smeće najavljuje dane sa sve lošijim mirisom. Bore označavaju godine. “Mogli biste odrediti vrijeme mjerenjem koliko se vaša kava ohladila na vašem stoliću”, rekao je Huber, koji je sada na Tehničkom univerzitetu u Beču i Institutu za kvantnu optiku i kvantne informacije Beč.

Rano u razgovorima u Barceloni Huber, Erker i njihove kolege shvatili su da je sat sve što podliježe nepovratnim promjenama: promjene u kojima se energija širi među više čestica ili u šire područje. Energija teži disipaciji – a entropija, mjera njenog rasipanja, ima tendenciju povećanja – jednostavno zato što postoji daleko, daleko više načina za raspodjelu energije nego za njenu visoku koncentraciju. Ova numerička asimetrija i znatiželjna činjenica da je energija započela ultrakoncentrirano na početku svemira, razlog su zašto se energija sada kreće prema sve raštrkanijim aranžmanima, jednu po jednu šalicu kave koja se hladi.

Čini se da ne samo da snažna tendencija širenja energije i nepovratni porast entropije uzrokuju strelicu vremena, već prema Huberu i kompaniji, također računaju satove. “Ireverzibilnost je zaista fundamentalna”, rekao je Huber. “Ovaj pomak u perspektivi smo htjeli istražiti.”

Kafa ne čini odličan sat. Kao i kod većine nepovratnih procesa, njegove interakcije s okolnim zrakom događaju se stohastički. To znači da morate izračunavati prosjek tokom dugog vremenskog razdoblja, obuhvaćajući mnoge slučajne sudare između molekula kave i zraka, kako biste precizno procijenili vremenski interval. Zato kafu, smeće ili bore ne nazivamo satovima.

To ime zadržavamo, shvatili su termodinamičari satova, za objekte čija je sposobnost mjerenja vremena poboljšana periodičnošću: neki mehanizam koji raspoređuje intervale između trenutaka u kojima se događaju nepovratni procesi. Dobar sat se ne menja samo. Otkucava.

Što su tikovi pravilniji, sat je tačniji. U svom prvom članku, objavljenom u Physical Review X 2017., Erker, Huber i koautori pokazali su da bolje mjerenje vremena ima svoju cijenu: što je veća točnost sata, to se više energije rasipa i više entropije proizvodi tokom otkucavanja.

Sat je mjerač protoka za entropiju ”, rekao je Milburn.

Otkrili su da bi idealan sat – koji otkucava savršenom periodičnošću – sagorio beskonačnu količinu energije i proizveo beskonačnu entropiju, što nije moguće. Stoga je tačnost satova u osnovi ograničena.

Zaista, u svom radu Erker i kompanija proučavali su tačnost najjednostavnijeg sata kojeg su se mogli sjetiti: kvantnog sistema koji se sastoji od tri atoma. “Vrući” atom povezuje se s izvorom topline, “hladan” atom se spaja s okolnom okolinom, a treći atom koji je povezan s oba druga “krpelja” podliježući pobudama i raspadima. Energija ulazi u sistem iz izvora topline, pokrećući krpelje, a entropija nastaje kada se otpadna energija ispušta u okoliš.

Istraživači su izračunali da otkucaji ovog troatomskog sata postaju pravilniji što sat proizvodi više entropije. Ovaj odnos između tačnosti sata i entropije “za nas je intuitivno imao smisla”, rekao je Huber, u svjetlu poznate veze između entropije i informacije.

“Postoji duboka veza između entropije i informacija”, rekao je Huber, pa bi svako ograničenje proizvodnje entropije sata trebalo prirodno odgovarati ograničenju informacija – uključujući, rekao je, “informaciju o vremenu koje je proteklo”.

U drugom radu objavljenom u Physical Review X ranije ove godine, teoretičari su proširili svoj model sata sa tri atoma dodavanjem složenosti-u suštini ekstra topli i hladni atomi povezani sa atomom koji otkucava. Pokazali su da ova dodatna složenost omogućava satu da koncentriše vjerovatnoću da se otkucaj dogodi u sve uže vremenske prozore, čime se povećava pravilnost i tačnost sata.

Ukratko, nepovratan porast entropije omogućuje mjerenje vremena, dok periodičnost i složenost poboljšavaju performanse sata. Ali do 2019. nije bilo jasno kako provjeriti timske jednadžbe ili kakve su veze, ako ništa drugo, jednostavni kvantni satovi s onima na našim zidovima.

Fizičari su se trudili razumjeti kako se vrijeme kvantne mehanike može pomiriti s pojmom vremena kao četvrte dimenzije u Einsteinovoj općoj teoriji relativnosti, trenutnom opisu gravitacije. Savremeni pokušaji pomirenja kvantne mehanike i opće relativnosti često tretiraju četverodimenzionalno prostor-vremensko tkivo Einsteinove teorije kao pojavljivanje, neku vrstu holograma skuhanog apstraktnijim kvantnim informacijama. Ako je tako, i vrijeme i prostor trebali bi biti približni pojmovi.

Izvor: quantamagazine.org

Šta je to Joule – Thompson efekat?

U termodinamici, Joule -Thomsonov efekt (poznat i kao Joule -Kelvinov efekt ili Kelvin -Jouleov efekt) opisuje promjenu temperature realnog plina ili tekućine (za razliku od idealnog plina) kada je protisnuta kroz ventil ili držeći ju izoliranom tako da se toplina ne izmjenjuje s okolinom. Ovaj postupak naziva se proces prigušivanja ili Joule -Thomsonov proces. Na sobnoj temperaturi, svi plinovi osim vodika, helija i neona hlade se nakon ekspanzije Joule -Thomsonovim procesom pri gušenju kroz otvor; ova tri plina imaju isti učinak, ali samo na nižim temperaturama. Većina tekućina, poput hidrauličnih ulja, zagrijat će se Joule -Thomsonovim postupkom prigušivanja.

Proces prigušivanja hlađenjem plinom obično se koristi u procesima hlađenja, poput ukapnivača. U hidraulici se učinak zagrijavanja iz Joule-Thomsonovog prigušivanja može koristiti za pronalaženje interno propuštajućih ventila jer će oni proizvesti toplinu koja se može otkriti termoelementom ili termovizijskom kamerom. Prigušivanje je u osnovi nepovratan proces. Prigušivanje uslijed otpora protoka u dovodnim vodovima, izmjenjivačima topline, regeneratorima i drugim komponentama (toplinskih) strojeva izvor je gubitaka koji ograničava performanse.

Šta se događa na apsolutnoj nuli?

Kada se nešto ohladi na apsolutnu nulu (Kelvina), da li se elektroni i druge subatomske čestice prestaju kretati? Ili “apsolutna nula” znači samo da se kretanje zaustavlja na molekularnom nivou (za razliku od subatomskog nivoa)?

Na apsolutnoj nuli molekularno kretanje prestaje. Ali šta se događa sa elektronima, da li se i oni zaustavljaju? Ako to učine, šta ih sprečava da padnu u jezgru?

Apsolutna nula je nula stepeni na Kelvinovoj skali termometra; odgovara oko -460 stepeni Fahrenheita i -273 stepeni Celzijusa.

Ni Svemir nije tako hladan. Dugotrajni sjaj Velikog praska u prosjeku zagrijava prostor na 3 stepena Kelvina – postoje neki hladniji džepovi. Maglina Bumerang (na 1 stepen K, udaljena 5000 svjetlosnih godina) je najhladnije poznato prirodno mjesto u svemiru.

Umjetno smo spustili temperaturu atoma na Zemlji na gotovo apsolutnu nulu. Atomi blizu apsolutne nule usporavaju se od svoje normalne brzine sobne temperature. Na sobnoj temperaturi, molekuli zraka kreću se oko 1800 kilometara na sat. Na oko 10 mikro stepeni Kelvina, atomi Rubidija kreću se sa samo oko 0,18 kilometara na sat – sporije od kornjače, kaže fizičar Luis Orozco sa Univerziteta Maryland.

Ali materija ne može doseći apsolutnu nulu zbog kvantne prirode čestica. To je povezano s Heisenbergovim principom nesigurnosti (nikada ne možemo znati tačno i brzinu i položaj čestice; zapravo, što preciznije znamo njenu brzinu, manje precizno znamo njen položaj).

Ako bi atom mogao dostići apsolutnu nulu, njegova temperatura bi bila tačno nula, što podrazumijeva tačnu brzinu od nule. Ali tačno poznavanje brzine atoma znači da o njegovom položaju ne znamo baš ništa.

“Zaista ne postoji fizički opis koji dopušta [atom na] nultoj temperaturi”, e-poštom šalje fizičara Erika Ramberga iz Fermilaba. Ako bi atom mogao postići apsolutnu nulu, njegova talasna funkcija bi se proširila “preko svemira”, što znači da se atom ne nalazi nigdje. Ali to je nemoguće. Kada pokušamo sondom istražiti atom ili elektron kako bismo ih lokalizirali, tada mu dajemo određenu brzinu, a time i temperaturu koja nije nula.

Inače, atom možemo zamisliti ili kao česticu (mala biljarska kugla) ili kao val. Kako se atomi približavaju apsolutnoj nuli, njihovi se talasni oblici šire. Talasni oblik velik poput svemira može se činiti čudnim, ali razne istraživačke grupe hladile su atome tamo gdje su njihove talasne funkcije velike kao međuatomska udaljenost. Kada se to dogodi, svi atomi na toj temperaturi čine jedan veliki “super-atom”, kaže gospodin Ramberg. To se naziva Bose-Einstein kondenzat.

  1. godine, laboratorij Helsinškog tehnološkog univerziteta u Finskoj, smanjio je temperaturu nekoliko atoma čak i dalje od istraživača 1995. godine – na najhladniju temperaturu do sada dostignutu – 0,0001 mikro stepeni K. Ali atomi su nastavili vibrirati.

Kako su informacije povezane sa entropijom?

Riječ informacija često se slobodno uzima u značenju podataka. Pretpostavljamo da datoteka veličine 1 MB sadrži 1 MB podataka. Međutim, iz perspektive teorije informacija, podaci nisu jednaki informacijama. U teoriji informacija informacije se matematički definiraju kao količina nesigurnosti ili entropije. Bacanje kocke ima više nesigurnosti od bacanja novčića, te stoga ima više informacija za prenijeti.



Nekomprimirana bitmapska slika ima puno prostorne redundancije u vrijednostima piksela. Drugim riječima, vrijednost piksela može se koristiti za predviđanje vrijednosti susjednih piksela. Tehnike kompresije slike koriste ovu suvišnost. Stoga je komprimirana slika bliža matematičkoj definiciji informacije. Ali MP3 pjesma može sadržavati ponavljanja refrena. Takođe, nakon što smo pjesmu čuli i dobro je zapamtili, ona pruža manje informacija kada je sljedeći put čujemo.

Stoga bi frazu “jedinice podataka” trebalo tumačiti kao “jedinice podataka / pohrane / memorije”.



Izvor: https://devopedia.org/units-of-information#:~:text=The%20basic%20unit%20of%20information,are%20derived%20from%20the%20bit.

Šta je to “Mpemba” efekt?

Mpemba efekt je prirodni efekt kada se ista količina početno toplije vode, brže smrzne od iste količine početno hladnije vode; skraćeno: topla voda se prije smrzne nego hladna.

Povijesni uvod

Mpemba efekt je prirodna pojava koja je odavno poznata u Zapadnom svijetu. Među prvima uočio ju je Aristotel (350 godina prije Krista). On je zapisao:

 „„činjenica da je voda prethodno ugrijana pridonosi bržem smrzavanju; tako se hladi brže. Stoga, mnogi ljudi, kada žele smrznuti toplu vodu što prije, prvo je stave na sunce..“”(Aristotel)

13. stoljeću Roger Bacon piše u svome Opus Majus o istom fenomenu i poziva se na Aristotelovu Meterologicu; on spominje da se fenomen događa tek pod nekim posebnim okolnostima. U povijesti su još poznati slučajevi, kao Giovanni Marliani koji je 1461. godine izveo eksperiment i dokazao da ovaj fenomen uistinu postoji. Kasnije u 17. stoljeću Francis Bacon i Rene Decartes sudjeluju u sličnim raspravama; u svojim Novom Organonu, Bacon zapisuje:

 „„..water a little warmed is more easily frozen that that which is quite cold.“”(Francis Bacon, Novi Organon, 1620.)

Sam Decartes je 1600. godine bezuspješno pokušavao objasniti zašto se toplija voda brže smrzne od hladnije. U pismu Decartesa kojeg je uputio Mersenneu , piše kako on ne proučava da li se toplija voda brže smrzne od hladnije, nego piše kako je prvo prokuhao vodu i pustio bi je da se ohladi na jednaku temperaturu kao i kod druge posude s neprokuhanom vodom. On kaže da bi se čak i tada prokuhana voda prije smrznula od neprokuhane, tj. da je voda nakon ključanja nekako promijenila svoja svojstva.

Godine 1963tanzanijski osnovnoškolac Erasto B. Mpemba je uočio istu pojavu i slijedom događaja je vratio u modernu znanost. Naime, u njegovoj školi bio je običaj da učenici rade sladoled. No, u hladnjaku nije uvijek bilo dovoljno mjesta za sve posude s vrućom smjesom mlijeka koje bi se kasnije hladile i pretvorile u sladoled, pa je Mpemba, u strahu da ne ostane bez sladoleda, stavio vruću smjesu mlijeka odmah u hladnjak (a to je bilo zabranjeno jer se smatralo da bi moglo oštetiti dragocijeni hladnjak), a da je prije toga nije pustio da se lagano ohladi na zraku. Uočio je da se posuda mlijeka neobično brzo smrznula i pitao je svoga profesora zašto se toplije mlijeko brže smrzne od hladnijeg. Profesor se samo izrugao s njim. No, Mpemba je bio ustrajan i ponavljao je pokus i pokazivao ga svojim prijateljima. U svakom pokusu toplije mlijeko bi se brže smrznulo od hladnijeg. Mpemba je još saznao da sladoledari u Tanga Cityju već odavno znaju za taj fenomen i praktično ga koriste.

Mpemba je krenuo u srednju školu i na njegovu sreću, u posjet im je došao Dr. Osborne, profesor fizike. Mpemba se odvažio i postavio isto pitanje. Profesor je bio jako skeptičan glede tog problema, ali je ipak obećao Mpembi da će provjeriti. Javio je svome asistentu da provjeri, a ovaj mu je nakon nekoliko eksperimenata dojavio da se toplija voda uistinu brže smrzne od hladnije i dodao je „ali ćemo ponavljati eksperminet dok ne dobijemo prave rezultate“. Ali eksperimenti su davali iste rezultate, pa su dr. Osborne i Mpemba napisali zajednični članak 1969. godine. Ubrzno, nakon objavljivanja članka, uslijedili su napadi, ali i mnogo potvrda Mpembina efekta. Iste godine, nezavisno, dr. Kell je napisao članak o tome kako se toplija voda brže smrzne od hladnije. On je bio upoznat s kanadskom urbanom legendom koja je upozoravala da se auto ne valja prati vrućom vodom za vrijeme hladnih dana, inače će se jako brzo smrznuti. Kell je kao objašnjenje je dao isparavanje. Smatrao je da će toplija voda gubiti na masi i da će se zbog toga brže ohladiti. No, ubrzo je napravljen eksperiment koji je tu tvrdnju demantirao.

Danas postoji nekoliko mogućih objašnjenja, uključujući isparavanje.

Preciznija definicija

Mpemba efekt se pojavljuje kada imamo dvije posude vode, idetične na svaki način, osim što jedna posuda sadrži topliju, a druga hladniju vodu, izložene u okolini u kojoj je tempeatura ispod nule i početno toplija voda se brže smrzne od početno hladnije. Očito je da ovo proturiječi zdravom razumu; uzmimo primjer: Imamo dvije posude vode. U posudi A je voda temperature 80⁰C, a u B vodu temperature 20⁰C. Izložimo ih jednakom hlađenju. Ako vodi u posudi B treba t(x) vremena da se smrzne (0⁰C) , logično je da će vodi u posudi A trebati neki t(y) vremena da se ohladi od 80⁰C do 20⁰C i plus vrijeme t(x) da se ohladi s 20⁰C na 0⁰C; tj za hlađenje vode u posudi A uvijek će trebati više vremena za t(y) od vode u posudi B. Isto tako, ovo proturiječi, na prvi pogled, i zakonima termodinamike i Newtonovom zakonu hlađenja:

gdje je k konstanta, a {displaystyle T_{alpha }} temperatura okoline, dok je T temperatura predmeta. Nije dovoljno postaviti pitanje „Da li se toplija voda brže smrzne od hladnije“, jer je očito da će se litra vruće vode brže smrznuti od čitavog oceana, pa tu i nema neke novosti; dakle nužno je definirati i količinu, isto tako i oblik, okolinu, itd. Isto tako, jasno je da se litra vode od 99,9⁰C neće brže smrznuti od litre vode temperature 0,01⁰C; pa je nužno definirati, uz količinu, i područje razlika temperatura u kojem će se uočavati Mpemba efekt. Isto tako bitno je kako ćemo definirati smrzavanje. To može biti „onda kada se pojave prvi kristalići leda“ ili „kada se voda potpuno smrzne“. Ako je pak proučavamo isparavanje, moramo uzeti u obzir i oblik posude i da li je posuda zatvorena ili ne. Pa je očito da Mpemba efekt ovisi o jednoj jako velikoj domeni parametara i očito je da je nužno uzeti u obzir svaki od tih parametara, ukoliko želimo konačno objašenjenje Mpembina efekta. Naravno, katkada je nemoguće uzeti u obzir sve parametre, jer bi inače trebali beskonačno vremena, pa se uvijek eliminiraju oni za koje smo „uvjereni“ da ne igraju veliku ulogu u cijeloj priči.

Moguća objašnjenja

Danas svijet fizike istražuje pet mogućih krivaca za Mpembin efekt. Napomenimo da niti jedno od ovih objašnjenja nije u potpunosti prihvaćeno zbog dosta kontradikcija ili nedostatka matematičkog aparata. Ukratko ćemo ih objasniti:

  • Isparavanje

Kao što smo već rekli, ovo objašnjenje je dao Kell 1969. godine. On je tvrdio da zbog isparavanja toplija voda izgubi dovoljno mase da se prije ohladi od hladnije vode. To bi značilo da se količina leda od početno toplije vode razlikuje u masi (tj. manja je) od količine leda početno hladnije vode. Uistinu, danas se smatra da je isparavanje važan čimbenik u svemu ovome, ali ipak vjeruje se da ne objašnjava Mpembin efekt, jer je Wojchiecowski, kako smo već spomenuli u prethodnom poglavlju, radio eksperiment sa zatvorenim posudama, gdje je masa vode sačuvana, i ipak bi se pojavljivao Mpembin efekt.

  • Okolina

Jedan od najjednostavnijih mogućih razloga. Uvjeti iz okoline. Kao primjer se navodi da ako u hladnjak stavimo topliju i hladniju vodu (koje su u čašama). Sada se te čaše nalaze na sloju leda. Toplija čaša će rastopiti taj sloj i imati će bolji kontakt s hladnjakom (kondukcija), te će se tako i brže hladiti. Isto tako, ako promatramo isparavanje, moramo voditi računa o obliku posude. Ovo može zvučati kao nešto banalno, ali upućuje da je bitno uvažiti i efekt okoline, ukoliko želimo točno objasniti ovu pojavu.

  • Otopljeni plin

Istina je da hladnija voda ima više otopljenog plina u sebi nego toplija voda. Posljedica toga je što se pri ključanju vode otopljeni plin oslobađa. Moguće je da taj plin na neki način utječe na točku smrzavanja vode ili količinu topline potrebne da se određena količina vode ohladi. Poznat je pokus Freemana s vodom zasićenoj s CO2 (koji nije opisivao ionska svojstva, koja su jako bitna). On je proučavao Mpemba efekt s vodom u kojoj je otopljen ugljikov dioksid. Ovo bi se moglo nadovezati na već spomenuti Descartesov pokus; isto tako Mpemba i Osborne su u svome eksperimentu radili s prokuhanom vodom i time je očito da to otopljeni plin i ne mora uzročnik Mpemba efekta (jer ga, kada voda proključa, praktički i nema).

  • Pothlađivanje

Godine 1916., F.C.Brown je radio eksperiment . Ulio je u 100 staklenih eprueta vodu iz slavine. Od toga, 50 ih je prokuhao, a 50 nije dirao. Prvo je pričekao da se temperature izjednače, a onda ih je stavio u okolinu s temperaturom ispod nule. Primjtio je da su se 44 epruete s prokuhanom vodom raspukle, a samo 4 s neprokuhanom. Brown je primjetio da se prokuhana voda više pothlađuje od neprokuhane. Brown je tu pojavu protumačio s pretpostvakom da prokuhana voda ima manje otopljenog plina koji spriječava pothlađivanje. N.E.Dorsy je, svojim eksperimentima, zaključio da otopljeni plin i ne igra neku važnu ulogu u pothlađivanju . On je pojavu da se toplija voda više pothladi od hladnije prepisao nukleacijskim mjestima koje toplija voda deaktivira. No, D.Auerbach je radio eksperimnete u kojima je dokazo da toplija voda manje pothlađuje nego hladnija, što se suprostavlja rezultatima Browna i Dorseya. Točnije, dokazao je da se početno toplija voda pothladila na -2⁰C, dok se početno hladnija pothladila na -8⁰C. No treba napomenuti da je Auerbach obavio jako mali broj ispitivanja, pa je sve to poprilično zamršeno. Očito da Auerbachova definicija ide u prilog objašnjenju Mpembina efekta, jer bi sada toplija voda trebala obaviti manji „put“ do zamrzavanja, nego hladnije voda. No, još uvijek nije sasvim razjašnjeno zašto se baš početno toplija voda manje pothladi od početno hladnije.

Najkompleksniji parametar od svih. Kako se voda hladi, razvijaju se konvenkcijske struje i temperatura više nije homogena. Zbog ove pojave, analiza se zakomplicira, jer više ne radimo s jednim parametrom, već sa skalarnom funkcijom i dinamika fluida postaje teška za opisati. Ipak, za temperature poviše 4⁰C, toplija voda ima manju gustoću od hladnije, i početi će se gibati (dizati) prema vrha, kao što predviđa Arhimedov zakon; tj. javljati će se ascedentno i descedetno strujanje. Očito je, zbog temperaturne nehomogenosti, da voda pri srednjoj temperaturi od, npr. 35⁰C, neće biti u svim dijelovima na toj temperaturi, već će na vrhu (posude) biti mnogo toplija a na dnu (posude) mnogo hladnije; što povlači i veće isparavanje od predviđenog. Ako želimo preko konvekcije objasniti Mpembin efekt, moramo promatrati i isparavanje. Valja napomenuti da je konvekcija osjetljiva na oblik i dimenzije posude.

Natječaj

2012. godine Britansko kraljevsko društvo za kemiju održalo je natječaj u potrazi za radovima koji bi ponudili moguće objašnjenje za Mpemba efekt. Među više od 22000 pristiglih prijava, rad Nikole Bregovića, asistenta na Prirodoslovno-matematičkom fakultetu Sveučilišta u Zagrebu osvojio je prvo mjesto. Njegov je rad pobjedničkim proglasio sam Erasto Mpemba.

Literatura

  • Aristotle in E. W. Webster, “Meteorologica I”, Oxford U. P., Oxford
  • F.Bacon, The Opus Majus of Roger Bacon, Part 6, p.584
  • R.Descartes, Euvres Letters de Descartes, p.998
  • D. Auerbach, “Supercooling and the Mpemba effect: When hot water freezes quicker than cold”
  • Mpemba and Osborne, “Cool”, Physics Education vol. 4
  • G.S. Kell, “The Freezing of Hot and Cold Water”, American Journal of Physics
  • B. Wojciechowski, “Freezing of Aqueous Solutions Containing Gases”, Cryst. Res. Technol
  • I. Firth, “Cooler?”, Phys. Educ. vol. 6
  • M.Freeman, “Cooler still – an answer? ” Phys. Educ.
  • F.C.Brown, „The frequent bursting of hot water pipes in household plumbing systems“, Phys. Rev.
  • N.E.Dorsy, „The freezing of supercooled water“, Trans. Am. Philos. Soc
  • Wikipedia

Koliki je stepen iskorištenja električnih motora?

Učinkovitost električnih automobila mnogo je veća od benzinskih ili hibridnih vozila. Iako svi to znaju, malo tko zna da to rezultira neočekivanim i kontraintuktivnim utjecajima na domet i performanse.
Prosječna učinkovitost motora automobila je 20 do 25 posto. To nije rezultat lošeg inženjeringa; daleko od toga. Moderni motor s unutrašnjim sagorijevanjem rezultat je više od sto godina kontinuiranog razvoja i milijardi dolara istraživanja. Ova niska efikasnost rezultat je izbora dizajna performansi ubrzanja i tvrdih ograničenja koja nameću zakoni termodinamike. Najefikasniji benzinski motor trenutno proizvodi Toyota i postiže toplotnu efikasnost od oko 40 posto.




Skoro sva električna vozila imaju stepen korisnosti motora i pogona preko 90%. Veća efikasnost je dobra stvar, ali i nemilosrdno izlaže loše odluke inženjerskog dizajna u stvarnim uvjetima. Razmotrimo nekoliko hipotetičkih električnih vozila koje se kreću autoputem na putu, od kojih svako ima identična akumulatora od 50 KWH.

Plavi automobil Vladinih motora = 92% efikasnosti = domet od 150 milja
Ograničeni zeleni automobil Lanterna = 96% efikasnosti = domet od 300 milja
Crveni automobil Stark Industries = 98% efikasnost = domet od 600 milja
Wayne Industries crni automobil = 99% efikasnosti = domet od 1.200 milja

Koliko dalje može ići Zeleni automobil od Plavog automobila? Odgovor je 100 posto! Udvostručite raspon na istu količinu energije! Crveni automobil je dvostruko bolji od toga, ali samo upola bolji od vrhunskog Crnog automobila. Male razlike u učinkovitosti između 90% i 100% = OGROMNE razlike u rasponu i / ili veličini / troškovima baterije.
Procijenjeno je da pri brzini od 75mph na autoputu u ravnini bez vjetra, Tesla Model S trošak energije nastaje zbog:

72% otpornost na vjetar
21% otpor kotrljanja guma
7% svi ostali gubici zajedno

To nije zato što Model S ima lošu aerodinamiku, daleko od toga. Model S ima CdA (aerodinamički koeficijent povlačenja) od 6,2 četvornih metara što je vrlo dobro i zapravo identično Priusu treće generacije. Pri brzinama na autocesti, raspon po KWH gotovo u potpunosti ovisi o aerodinamičnom obliku / veličini električnog automobila i kvaliteti / poravnavanju / inflaciji guma. Trenutni proizvođači automobila koji su navikli da rade u rasponu niske efikasnosti od 25% nisu navikli da se drže visokih standarda izvrsnosti u ovom pogledu. Vozilo s 92% efikasnosti je nevjerovatno poboljšanje u odnosu na trenutna vozila od 20 do 25%. Ali bilo koji tradicionalni proizvođač automobila koji svoju „igru“ dovede u arenu električnih vozila A + i A ++ naći će se poniženim u pogledu efikasnosti, dometa i performansi.





Moglo bi se tvrditi da to utječe samo na električne automobile koji se voze velikom brzinom na putovanjima na velike daljine. Ali ovim nedostaje veća poanta. I.C.E. automobili su toliko neučinkoviti i zahtijevaju toliko održavanja u usporedbi s električnim da su mentalitet, korporativna kultura i poslovni model proizvođača automobila, dilera i servisnih radionica izvan koraka i nekompatibilni s novom tehnologijom.

Izvor: www.tesla.com