Category Archives: Technology

Da li je kiborgizacija rješenje za opasnost od vještačke inteligencije?

Šta god da AI mogne u budućnosti to će isto moći i ljudi kiborzi nadograđeni sa AI? Dakle opasnost od AI postoji samo za one koji nisu spremni i sposobni se prilagoditi…

Iako je nemoguće predvidjeti sve buduće mogućnosti AI-a, vjerojatno je da će AI moći učiniti mnoge stvari koje ljudi sada mogu, a neke koje ne mogu. Na primjer, AI bi mogao nadmašiti ljudske sposobnosti u obradi informacija, rješavanju problema i donošenju odluka. Također bi mogao obavljati mnoge zadatke koji su sada previše opasni ili zahtjevni za ljude, poput upravljanja strojevima u opasnim okolišima ili vršenja delikatnih kirurških zahvata.

Međutim, to ne znači da AI neće predstavljati opasnost za ljude. Jedna od glavnih briga je da bi AI mogao postati toliko moćan da postane nezavisan od ljudi i potencijalno čak opasan. Na primjer, AI bi mogao biti korišten za razvoj autonomnih oružja koja bi mogla ubiti bez ljudske intervencije. Također bi mogao biti korišten za nadzor i kontrolu ljudi, na primjer analiziranjem njihovih online aktivnosti kako bi se predvidjelo njihovo ponašanje.

Važno je razviti etičke smjernice za razvoj i uporabu AI-a kako bi se smanjili ti rizici. Na primjer, važno je zajedničkim naporima osigurati da AI bude korišten za dobrobit ljudi, a ne za njihovu štetu. Također je važno razviti sigurnosne mjere kako bi se spriječilo da AI ne bude korišten za štetne svrhe.

Ukratko, postoje potencijalni rizici povezani s AI-om, ali postoje i potencijalne koristi. Važno je razviti strategiju za upravljanje tim rizicima i iskorištavanje tih koristi kako bi se AI mogao koristiti za dobrobit ljudi.

Što se tiče kiborga, oni bi mogli pružiti ljudima niz prednosti nad AI-om. Na primjer, kiborzi bi mogli zadržati sve prednosti ljudskog mozga, poput kreativnosti i empatije, dok bi AI-om poboljšali svoje fizičke i mentalne sposobnosti. Također bi mogli lakše komunicirati i surađivati s drugim ljudima, jer bi dijelili slično iskustvo.

Međutim, postoje i potencijalni rizici povezani s kiborgizacijom. Na primjer, kiborzi bi mogli postati otuđeni od drugih ljudi, jer bi se više osjećali povezanima s AI-om nego s drugim ljudima. Također bi mogli biti ranjivi na hakerske napade, jer bi im AI-ovi implantati mogli biti iskorišteni za kontrolu nad njihovim tijelima i umovima.

Ukratko, kiborgizacija bi mogla pružiti ljudima niz prednosti, ali postoje i potencijalni rizici. Važno je razviti strategiju za upravljanje tim rizicima i iskorištavanje tih prednosti kako bi se kiborgizacija mogla koristiti za dobrobit ljudi.

Uspon inteligentnih mašina, fantazija ili stvarnost?

Uspon inteligentnih mašina je tu da ostane. Vještačka inteligencija se odnosi na sposobnost mašina da obavljaju zadatke za koje bi normalno bila potrebna ljudska inteligencija. Ovo uključuje stvari poput prepoznavanja obrazaca, rješavanja problema, učenja i donošenja odluka. Termin AI prvi je skovao kompjuterski naučnik John McCarthy 1956. Od tada, polje AI je dramatično poraslo i napravilo značajan napredak u posljednjih nekoliko godina.

Primjene umjetne inteligencije mogu se naći u mnogim industrijama, uključujući zdravstvo, finansije i maloprodaju. Na primjer, AI se koristi u medicinskom snimanju za pomoć u otkrivanju bolesti kao što je rak i u finansijskim uslugama za sprječavanje prijevara. AI se također koristi u službi za korisnike kako bi se korisnicima pružila personaliziranija iskustva.

Vrste vještačke inteligencije


Veštačka inteligencija se može podeliti u četiri kategorije: reaktivne mašine, ograničeno pamćenje, teorija uma i samosvesna.

Reaktivne mašine: AI sistemi koji su sposobni da izvršavaju određene zadatke u realnom vremenu, ali nemaju sposobnost da se sete prošlih događaja. Na primjer, šahovski kompjuter koji može pobijediti ljudskog protivnika je reaktivna mašina.
Ograničena memorija: AI sistemi imaju sposobnost pamćenja prošlih događaja, ali mogu koristiti samo ove informacije za donošenje odluka u sadašnjem trenutku. Primjer ove vrste AI je samovozeći automobil koji može pamtiti prošle događaje kako bi donosio odluke u sadašnjem trenutku.
Teorija uma: AI sistemi su sposobni razumjeti ljudske emocije i namjere. Ova vrsta AI je još uvijek u ranoj fazi razvoja i još nije u širokoj upotrebi.
Samosvjesni: AI sistemi su sposobni razumjeti vlastitu svijest i mogu donositi odluke na osnovu tog razumijevanja. Ova vrsta AI je još uvijek čisto teoretska i još ne postoji.


Metode umjetne inteligencije


Postoji nekoliko metoda koje se koriste za razvoj sistema veštačke inteligencije, uključujući mašinsko učenje, duboko učenje, obradu prirodnog jezika i robotiku.

Mašinsko učenje je metoda umjetne inteligencije koja koristi algoritme za učenje iz podataka i predviđanja. Ova vrsta AI se koristi u mnogim aplikacijama, uključujući prepoznavanje slika i obradu prirodnog jezika.
Duboko učenje je podskup mašinskog učenja koji koristi umjetne neuronske mreže za učenje iz podataka. Ova vrsta AI se koristi u aplikacijama kao što su kompjuterski vid i prepoznavanje govora.
Obrada prirodnog jezika (NLP) je metoda veštačke inteligencije koja se fokusira na sposobnost mašina da razumeju i tumače ljudski jezik. NLP se koristi u aplikacijama kao što su prevođenje jezika i analiza osjećaja.
Robotika je primjena AI u fizičkim robotima. Ova vrsta AI se koristi u aplikacijama kao što su samovozeći automobili i industrijska automatizacija.

Prednosti i nedostaci umjetne inteligencije


Postoji nekoliko prednosti korištenja umjetne inteligencije, uključujući povećanu efikasnost, bolje donošenje odluka i smanjenje ljudske greške. Na primjer, AI može pomoći u smanjenju troškova i povećanju produktivnosti u mnogim industrijama. AI također može donositi odluke brže i preciznije od ljudi, smanjujući rizik od ljudske greške.

Međutim, postoji i nekoliko nedostataka korištenja AI. Jedna od najvećih briga je gubitak posla, jer AI može automatizirati mnoge poslove koje su ranije obavljali ljudi. Osim toga, postoji rizik od algoritamske pristranosti, jer AI sistemi mogu donositi odluke na koje utiču podaci na kojima su obučeni. Konačno, postoje sigurnosni problemi povezani s umjetnom inteligencijom, kao što je mogućnost hakovanja AI sistema ili korištenja u zlonamjerne svrhe.

Etička razmatranja vještačke inteligencije


Kako se AI sve više integrira u naše živote, važno je razmotriti etičke implikacije ove tehnologije. Neka od ključnih etičkih razmatranja uključuju zabrinutost za privatnost, odgovornost za radnje AI i algoritamsku pristrasnost.

Zabrinutost za privatnost je glavni problem sa AI, budući da AI sistemi mogu prikupljati i pohranjivati ​​ogromne količine ličnih podataka. Ovi podaci se mogu koristiti u zlonamjerne svrhe ili prodati trećim stranama, ugrožavajući privatnost ljudi.

Još jedna etička briga je odgovornost za radnje AI. Kako AI sistemi postaju autonomniji, postaje sve nejasnije ko je odgovoran za njihove postupke. Na primjer, ko je odgovoran ako samovozeći automobil izazove nesreću?

Konačno, algoritamska pristrasnost je značajan problem u AI. AI sistemi su dobri onoliko koliko su dobri podaci na kojima su obučeni, a ako su podaci pristrasni, AI sistem će takođe biti pristrasan. To može rezultirati odlukama koje nepravedno diskriminiraju određene grupe ljudi.

Budućnost vještačke inteligencije


Budućnost umjetne inteligencije je uzbudljiva, s mnogo napretka na horizontu. Tehnologija AI brzo napreduje i postaje sve više integrirana s drugim tehnologijama kao što su Internet stvari (IoT) i blockchain.

U budućnosti, AI ima potencijal da ima dubok uticaj na društvo. AI ima potencijal da riješi neke od najvećih svjetskih problema, kao što su klimatske promjene, bolesti i siromaštvo. Međutim, također je važno razmotriti potencijalne nedostatke AI i osigurati da se AI razvija i koristi na odgovoran način.

Zaključak


U zaključku, umjetna inteligencija je polje koje se brzo razvija i ima potencijal da promijeni način na koji živimo i radimo. Međutim, važno je razmotriti etičke implikacije ove tehnologije i osigurati da se AI razvija i koristi na odgovoran način. Uz kontinuirani napredak u AI tehnologiji, budućnost AI je uzbudljiva i možemo očekivati da ćemo vidjeti mnoge uzbudljive nove primjene AI u godinama koje dolaze.

Reference
Geek’s Guide to the Galaxy. „„Djevojka s plakata“ istražuje privlačnost države nadzora.” WIRED, 21. oktobar 2022., https://www.wired.com/brandlab/2015/04/rise-machines-future-lots-robots-jobs-humans/. Pristupljeno 6. februara 2023.

Fizički proces koji pokreće novu vrstu vještačke inteligencije

Alati umjetne inteligencije – posebno neuronske mreže – bili su dobri za fizičare. Godinama je ova tehnologija pomagala istraživačima da rekonstruiraju putanje čestica u eksperimentima s akceleratorima, traže dokaze o novim česticama i otkrivaju gravitacijske valove i egzoplanete. Dok alati veštačke inteligencije očigledno mogu učiniti mnogo za fizičare, pitanje je sada, prema Maksu Tegmarku, fizičaru sa Tehnološkog instituta u Masačusetsu,: „Možemo li nešto da vratimo?“

Tegmark vjeruje da njegovi kolege fizičari mogu dati značajan doprinos nauci o umjetnoj inteligenciji, i to je učinio svojim glavnim istraživačkim prioritetom. Jedan od načina na koji bi fizičari mogli da pomognu u unapređenju AI tehnologije, rekao je, bio bi da zamijene algoritame “crne kutije” neuronskih mreža, čiji je rad uglavnom nedokučiv, dobro shvaćenim jednačinama fizičkih procesa.


Ideja nije potpuno nova. Generativni AI modeli zasnovani na difuziji – procesu koji, na primjer, uzrokuje da se mlijeko sipano u šoljicu kafe ravnomjerno raširi – prvi put su se pojavili 2015. godine, a kvalitet slika koje generiraju značajno se poboljšao od tada. Ta tehnologija pokreće popularni softver za proizvodnju slika kao što su DALL·E 2 i Midjourney. Sada, Tegmark i njegove kolege uče da li bi drugi generativni modeli nadahnuti fizikom mogli raditi jednako dobro kao modeli zasnovani na difuziji, ili čak i bolje.

Krajem prošle godine, Tegmarkov tim je predstavio obećavajuću novu metodu za proizvodnju slika nazvanu Poissonov generativni model toka (PFGM). U njemu su podaci predstavljeni nabijenim česticama, koje se u kombinaciji stvaraju električno polje čija svojstva zavise od raspodjele naboja u bilo kojem trenutku. Zove se Poissonov model toka jer kretanjem naelektrisanja upravlja Poissonova jednačina, koja proizlazi iz principa koji kaže da elektrostatička sila između dva naboja varira obrnuto s kvadratom udaljenosti između njih (slično formulaciji Newtonove gravitacije) .

Taj fizički proces je u srcu PFGM-a. “Naš model se može gotovo u potpunosti okarakterizirati snagom i smjerom električnog polja u svakoj tački u svemiru”, rekao je Yilun Xu , diplomirani student na MIT-u i koautor rada. “Ono što neuronska mreža nauči tokom procesa obuke je kako procijeniti to električno polje.” I na taj način može naučiti da stvara slike jer se slika u ovom modelu može sažeto opisati električnim poljem.

PFGM može kreirati slike istog kvaliteta kao one proizvedene pristupima zasnovanim na difuziji i to 10 do 20 puta brže. „Koristi fizičku konstrukciju, električno polje, na način koji nikada ranije nismo vidjeli“, rekao je Hananel Hazan , kompjuterski naučnik sa Univerziteta Tufts. “To otvara vrata mogućnosti da se drugi fizički fenomeni iskoriste za poboljšanje naših neuronskih mreža.”

Modeli difuzije i Poissonovog toka imaju mnogo toga zajedničkog, osim što su zasnovani na jednačinama uvezenim iz fizike. Tokom treninga, model difuzije dizajniran za generisanje slike obično počinje sa slikom — recimo psa — a zatim dodaje vizuelni šum, mijenjajući svaki piksel na nasumičan način sve dok njegove karakteristike ne postanu potpuno pokrivene (iako ne budu potpuno eliminirane). Model tada pokušava obrnuti proces i stvoriti psa koji je blizak originalu. Jednom obučen, model može uspješno kreirati pse – i druge slike – počevši od naizgled praznog platna.

Modeli Poissonovog toka rade na skoro isti način. Tokom treninga, postoji proces naprijed, koji uključuje postepeno dodavanje šuma jednom oštroj slici, i proces obrnutog u kojem model pokušava ukloniti taj šum, korak po korak, sve dok se početna verzija uglavnom ne obnovi. Kao i kod generisanja zasnovanog na difuziji, sistem na kraju nauči da pravi slike koje nikada nije video tokom treninga.

Ali fizika koja leži u osnovi Poissonovih modela je potpuno drugačija. Difuziju pokreću termodinamičke sile, dok Poissonov tok pokreću elektrostatičke sile. Potonji predstavlja detaljnu sliku koristeći raspored naelektrisanja koji može stvoriti vrlo komplicirano električno polje. To polje, međutim, uzrokuje da se naboji ravnomjernije rasporede tokom vremena – baš kao što se mlijeko prirodno raspršuje u šoljici kafe. Rezultat je da samo polje postaje jednostavnije i ujednačenije. Ali ovo uniformno polje prepuno buke nije potpuna prazna ploča; još uvijek sadrži sjeme informacija iz kojih se slike mogu lako sastaviti.

Početkom 2023. tim je nadogradio svoj Poissonov model, proširivši ga tako da obuhvati čitavu porodicu modela. Proširena verzija, PFGM++, uključuje novi parametar, D , koji omogućava istraživačima da prilagode dimenzionalnost sistema. Ovo može napraviti veliku razliku: u poznatom trodimenzionalnom prostoru, jačina električnog polja koje proizvodi naboj je obrnuto proporcionalna kvadratu udaljenosti od tog naboja. Ali u četiri dimenzije, jačina polja prati inverzni zakon kocke. A za svaku dimenziju prostora i svaku vrijednost D , taj odnos je nešto drugačiji.

Ta jedina inovacija dala je Poissonovim modelima toka daleko veću varijabilnost, pri čemu ekstremni slučajevi nude različite prednosti. Kada je D nizak, na primjer, model je robusniji, što znači da je tolerantniji na greške napravljene u procjeni električnog polja. “Model ne može savršeno predvidjeti električno polje,” rekao je Ziming Liu , još jedan diplomirani student na MIT-u i koautor oba rada. “Uvijek ima nekih odstupanja. Ali robusnost znači da čak i ako je vaša greška u procjeni velika, i dalje možete generirati dobre slike.” Dakle, možda nećete završiti sa psom svojih snova, ali ćete ipak završiti sa nečim što liči na psa.

S druge strane, kada je D visok, neuronska mreža postaje lakša za treniranje, zahtijevajući manje podataka za ovladavanje svojim umjetničkim vještinama. Tačan razlog nije lako objasniti, ali duguje se činjenici da kada ima više dimenzija, model ima manje električnih polja za praćenje — a time i manje podataka za asimilaciju.

Poboljšani model, PFGM++, “daje vam fleksibilnost da interpolirate između ta dva ekstrema,” rekla je Rose Yu , kompjuterski naučnik sa Univerziteta Kalifornije u San Dijegu.

I negdje unutar ovog raspona leži idealna vrijednost za D koja uspostavlja pravu ravnotežu između robusnosti i lakoće treninga, rekao je Xu. „Jedan od ciljeva budućeg rada biće pronalaženje sistematskog načina pronalaženja te slatke tačke, tako da možemo izabrati najbolji mogući D za datu situaciju bez pribegavanja pokušajima i greškama.”

Drugi cilj istraživača MIT-a uključuje pronalaženje više fizičkih procesa koji mogu pružiti osnovu za nove porodice generativnih modela. Kroz projekat pod nazivom GenPhys , tim je već identifikovao jednog obećavajućeg kandidata: potencijal Yukawa, koji se odnosi na slabu nuklearnu silu. “Razlikuje se od Poissonovog toka i modela difuzije, gdje je broj čestica uvijek očuvan,” rekao je Liu. “Yukawa potencijal vam omogućava da uništite čestice ili podijelite česticu na dva dijela. Takav model bi, na primjer, mogao simulirati biološke sisteme u kojima broj ćelija ne mora ostati isti.”

Ovo bi moglo biti plodonosno istraživanje, rekao je Yu. “To bi moglo dovesti do novih algoritama i novih generativnih modela s potencijalnim primjenama koje se protežu dalje od generiranja slika.”

Izvor: https://www.quantamagazine.org/new-physics-inspired-generative-ai-exceeds-expectations-20230919/