Category Archives: Moderna fizika

Kako Higsovo polje daje masu česticama i šta je Higsov bozon?

**Higsov bozon**, poznat i kao **Higsov čestica**, je elementarna čestica u **Standardnom modelu** čestica. Ona se stvara kvantnom ekscitacijom **Higsovog polja**, jednog od polja u teoriji čestica. Evo kako Higsov bozon daje masu drugim česticama:

1. **Polja i čestice**: Prvo, svaka elementarna čestica dobija svoj jedinstveni skup osobina interakcijom sa nevidljivim entitetima zvanim **polja**. Polja su slična sportskim terenima na kojima se čestice kreću i sudaraju. Na primer, **elektromagnetno polje** je povezano sa **fotonima**, česticama svetlosti.

2. **Higsovo polje**: Postoji i **Higsovo polje** koje daje masu česticama. Sve osim masivnih fotona i gluona dobijaju svoje mase interakcijom sa Higsovim poljem. Zamislite da Higsovo polje deluje kao gust sirup kroz koji čestice prolaze. Neke čestice se teže probijaju kroz ovaj “sirup” od drugih, što ih čini težim. Na primer, **elektroni** i **neutrini** su lakše čestice, dok je **top kvark** hiljade puta više otežan dejstvom Higsovog polja¹.

3. **Higsov mehanizam**: Higsovo polje je skalarno polje sa dva neutralna i dva električki nabijena komponenta. Ovo polje ima vrednost različitu od nule svuda (uključujući prazan prostor), što narušava simetriju slabog izospina elektroslabe interakcije. Preko **Higsovog mehanizma**, sve masivne elementarne čestice Standardnog modela, uključujući sam Higsov bozon, dobijaju masu.

Ukratko, Higsov bozon posreduje interakciju sa Higsovim poljem i omogućava drugim česticama da dobiju masu. Bez Higsovog polja, sve bi čestice bile bez mase i kretale bi se brzinom svetlosti, bez mogućnosti  da formiraju atome²³.

**Higsov bozon** i **Higsovo polje** su ključni koncepti u fizici elementarnih čestica. Evo kako se razlikuju:

1. **Higsov bozon**:
   – Higsov bozon, takođe poznat kao Higsova čestica, je **elementarna čestica** u **Standardnom modelu** čestica.
   – On je **masivni skalarni bozon** sa **nulom spina**, **pozitivnom paritetom**, **bez električkog naboja** i **bez boje**.
   – Higsov bozon **se raspada** gotovo odmah nakon što se stvori.
   – Njegova **masa** je eksperimentalno određena i iznosi oko **125 GeV/c²**².

2. **Higsovo polje**:
   – Higsovo polje je **skalarno polje** koje ispunjava celokupan prostor svemira.
   – Prema teoriji, Higsovo polje daje masu svim elementarnim česticama.
   – Kada čestice interaguju sa Higsovim poljem, dobijaju masu. Ovo se dešava putem **Higsovog mehanizma**.
   – Higsovo polje ima **dva neutralna i dva električki nabijena komponenta** koja formiraju kompleksni dublet **slabe izospin SU(2) simetrije**.
   – Polje ima vrednost različitu od nule svuda u prostoru, što narušava simetriju **elektroslabe interakcije** i daje masu svim masivnim elementarnim česticama, uključujući i sam Higsov bozon.

Ukratko, Higsov bozon je konkretna čestica koja se javlja kao talas u Higsovom polju. Higsovo polje, s druge strane, ispunjava celokupan prostor i omogućava masu drugim česticama⁴⁶.

|

Koja su se značajna otkrića dogodila u fizici u 2024. godini?

Fizika je nauka koja neprestano otkriva nove i fascinantne aspekte svemira. U 2024. godini, neka od značajnih otkrića u fizici su:

  • Otkriće novog tipa neutrina. Neutrini su elementarne čestice koje imaju vrlo malu masu i slabo reaguju sa drugom materijom. Postoje tri poznata tipa neutrina: elektronski, mionski i tau neutrini. Međutim, naučnici sa eksperimenta MiniBooNE na Fermilabu u SAD su objavili da su otkrili dokaze za postojanje četvrtog tipa neutrina, koji se naziva sterilni neutrino¹. Ovaj otkriće bi moglo da promeni naše razumevanje osnovnih sila i čestica u prirodi.
  • Otkriće novog stanja materije. Materija može da postoji u različitim stanjima, kao što su čvrsto, tečno, gasovito, plazma i drugi. Naučnici sa Univerziteta u Amsterdamu u Holandiji su otkrili da materija može da postoji i u novom stanju, koje se naziva kvantna tečnost kristala². Ovo stanje materije ima svojstva i tečnosti i kristala, i može da prenosi električnu struju bez otpora. Ovo otkriće bi moglo da ima primene u kvantnim računarima i superprovodnicima.
  • Otkriće novog načina merenja gravitacionih talasa. Gravitacioni talasi su talasi u prostor-vremenu koji nastaju kada se ubrzavaju masivni objekti, kao što su crne rupe ili neutronske zvezde. Gravitacioni talasi su prvi put direktno detektovani 2015. godine pomoću LIGO i Virgo detektora³. Međutim, naučnici sa Univerziteta u Glazgovu u Škotskoj su otkrili da se gravitacioni talasi mogu meriti i pomoću optičkih vlakana, koja se koriste za prenos podataka na internetu⁴. Ovo otkriće bi moglo da omogući bolje i jeftinije merenje gravitacionih talasa i njihovih izvora.


(1) Istraživanje: Nova otkrića u fizici ukazuju na to da živimo u …. https://www.index.hr/vijesti/clanak/istrazivanje-nova-otkrica-u-fizici-ukazuju-na-to-da-zivimo-u-simulaciji/2503504.aspx.
(2) Ovo je deset izvanrednih arheoloških otkrića u 2023. godini – Klix.ba. https://www.klix.ba/scitech/nauka/ovo-je-deset-izvanrednih-arheoloskih-otkrica-u-2023-godini/231227070.
(3) Najveća otkrića koja je čovječanstvo ostvarilo u posljednjih 10 godina …. https://www.haber.ba/sci-tech/nauka/779763-najveca-otkrica-koja-je-covjecanstvo-ostvarilo-u-posljednjih-10-godina.
(4) 7 najznačajnijih otkrića koje nam je nauka donela u 21. veku. https://nationalgeographic.rs/nauka/prirodne-nauke/a25085/7-najznacajnijih-otkrica-koje-nam-je-nauka-donela-u-21-veku.html.
(5) Istraživanje: Nova otkrića u fizici ukazuju na to da živimo u …. https://www.index.hr/vijesti/clanak/istrazivanje-nova-otkrica-u-fizici-ukazuju-na-to-da-zivimo-u-simulaciji/2503504.aspx.

Teleskop Džejms Veb otkrio je “ekstremni” sjaj koji dolazi iz 90 odsto najranijih galaksija u svemiru.

Svemirski teleskop James Webb (JWST) otkrio je da su gotovo sve najranije galaksije u svemiru bile ispunjene blistavim plinovitim oblacima koji su svijetlili svjetlije od zvijezda u nastajanju u njima — i to bi moglo pomoći u rješavanju misterije koja prijeti razbijanjem kosmologije.

Formirajući se već 500 miliona godina nakon Velikog praska, neke rane galaksije su viđene kako sijaju tako jako da ne bi trebale postojati: sjaj njihove veličine trebao bi doći samo od masivnih galaksija sa onoliko zvijezda koliko i Mliječni put, ali galaksije su se formirale u djeliću vremena koje je naša galaksija trebala formirati.

Otkriće je pretilo da poremeti razumevanje formiranja galaksija, pa čak i standardni model kosmologije, koji kaže da se nekoliko miliona godina nakon Velikog praska (pre 13,8 milijardi godina) energija kondenzovala u materiju iz koje su se prve zvezde polako spajale. Ipak, kada je JWST došao online, vidio je previše zvijezda.

Sada su astronomi pronašli mogući odgovor: velika grupa galaksija starih 12 milijardi godina od kojih je gotovo 90% bilo upleteno u svijetli plin koji je — nakon što ih je zapalila svjetlost okolnih zvijezda — pokrenuo intenzivne rafale formiranja zvijezda dok se plin hladio. Novo istraživanje je prihvaćeno za objavljivanje u časopisu The Astrophysical Journal.

“Naš rad dokazuje da su interakcije sa susednim galaksijama odgovorne za neobičan sjaj ranih galaksija,” rekao je Anšu Gupta, astrofizičar sa Univerziteta Kurtin u Australiji. Eksplozija formiranja zvezda izazvana interakcijama takođe bi mogla da objasni masivniju prirodu ranih galaksija. 

Astronomi su otkrili sjajne gasne oblake u podacima prikupljenim u okviru JWST-ovog naprednog dubokog ekstragalaktičkog istraživanja, koje je koristilo tri instrumenta teleskopa za prikupljanje infracrvenih slika galaksija pre nego što su analizirali njihov spektar.

Posmatrajući frekvencije svetlosti koje su emitovale galaksije, istraživači su otkrili šiljke “ekstremnih emisijskih karakteristika” – jasan znak da gas hvata svetlost obližnjih zvezda pre nego što ga je emitovao.

“Gas ne može sam da emituje svetlost,” rekao je Gupta. “Ali mlade, masivne zvijezde emitiraju pravu vrstu zračenja da pobude plin — a rane galaksije imaju mnogo mladih zvijezda.”

Nakon poređenja ovog emisijskog spektra sa onima pronađenim u novijim galaksijama koje naseljavaju današnji univerzum, istraživači su otkrili da oko 1% ima slične osobine. Istraživači su rekli da će proučavanjem ovih kasnijih galaksija, koje je lakše izmeriti, steći važan uvid u ranije galaksije i početke hemije svemira.

“Hemijski elementi koji čine sve opipljivo na Zemlji i svemiru, osim vodonika i helijuma, nastali su u jezgrima udaljenih zvezda,” rekao je Gupta. Dakle, važno je razumeti uslove koji okružuju galaksije i zvezde u ranom univerzumu kako bismo bolje razumeli sopstveni svet danas.

Misteriozni objekat u obliku upitnika snimljen u dubokom svemiru od strane JWST-a?

Svemirski teleskop James Webb (JWST) dao je mnoge odgovore o poreklu svemira otkako je lansiran u decembru 2021. Takođe stalno postavlja nova pitanja. Ono što je zbunilo astronome širom svijeta sa nedavne slike je objekat koji se nalazi odmah ispod zvijezda nalik na džinovski znak pitanja u svemiru.

Može li biti da nam univerzum postavlja pitanje?

  1. juna, na primjer, stručnjaci iz Evropske svemirske agencije objavili su novu sliku koju je snimio JWST nudeći detaljan pogled na dvije mlade zvijezde koje se aktivno formiraju smještene u sazviježđu Vela – oko 1.470 svjetlosnih godina udaljene od Zemlje – i poznate kao Herbig- Haro 46/47.

Intrigantni uzorci u svemiru
“Otkad su astronomi okrenuli svoje oči ka zvijezdama, bili smo u iskušenju da uočimo obrasce u onome što nalazimo gore. Mnoge magline, koje su oblaci međuzvjezdanog plina, i galaksije su nazvane po svojim očiglednim oblicima, iako je većinu ovih obrazaca koje su primijetili rani astronomi postalo prilično teže vidjeti kako su se teleskopi poboljšali i detalji u svakom objektu postali jasniji.” rekao je Gregory Brown, astronom Kraljevske opservatorije Greenwich.

Ono što se nekada smatralo slabom mrljom grubog oblika božićnog drvca ili vještičje glave sada se češće doživljava kao složeni oblaci i niti plina i prašine. Možda ćemo jednog dana moći da posmatramo ovu galaksiju teleskopima takvog kvaliteta da će čak i ovaj relativno jednostavan oblik biti izgubljen u novim detaljima koje možemo da vidimo.”

“Žao mi je što moram reći ljudima da to vjerovatno nije poruka čovječanstvu – ali pokazuje nevjerovatnu sposobnost ovog teleskopa da istraži naš svemir kao nikada prije,” rekao je Stephen Wilkins, astronom sa Univerziteta u Sussexu.

Proučavanje upitnika u svemiru


Iako je još uvek nejasno šta bi ovaj astronomski objekat mogao da bude, njegova boja i oblik već nude neke nagoveštaje. Prema predstavnicima Instituta za nauku svemirskog teleskopa (STScI) u Baltimoru (koji upravlja JWST-ovim radom), to je verovatno udaljena galaksija, ili potencijalno interaktivne galaksije, sa njihovim interakcijama koje uzrokuju iskrivljeni oblik znaka pitanja.

Slično objašnjenje nedavno je iznio Matt Caplan, docent fizike na Državnom univerzitetu Illinois. Po njegovom mišljenju, dvije različite karakteristike mogle bi biti spajanje galaksija, pri čemu je gornja strana upitnika dio veće galaksije.

S obzirom na boju nekih drugih pozadinskih galaksija, ovo se ne čini kao najgore objašnjenje. Uprkos tome koliko su haotična spajanja, dvostruki režnjevi predmeti sa zakrivljenim repovima koji se protežu od njih su veoma tipični,” rekao je on. 

Webb nam pokazuje novi dio našeg svijeta
Iako je Kaplan priznao da bi moglo biti mnogo drugih objašnjenja o tome šta ovaj kosmički objekat predstavlja, najverovatnije nije zvezda, zbog nedostatka osam krakih šiljaka za prelamanje koji kao da izlaze spolja od zvezda na JWST-ovim slikama kao rezultat svojih ogledala.

Ovo je možda prvi put da vidimo ovaj objekat. Potrebno je dodatno praćenje kako bi se sa sigurnošću utvrdilo šta je to. Webb nam pokazuje mnogo novih, udaljenih galaksija – tako da ima puno nove nauke koja treba da se uradi!,” zaključili su predstavnici STScI.

Galaktička spajanja
Spajanje galaksija je čest događaj u svemiru, često rezultirajući većim, eliptičnim galaksijama. Ovaj proces može potrajati od nekoliko stotina miliona do više od milijardu godina da se završi. 

Kako se dve galaksije približavaju, njihove međusobne gravitacione sile stupaju u interakciju, uzrokujući da se zvezde, gas i prašina mešaju i interaguju na složene načine. To može izazvati intenzivno formiranje zvijezda, a ako obje galaksije imaju supermasivnu crnu rupu u svojim centrima, ove crne rupe se na kraju mogu spojiti.

Izvor: https://www.earth.com/news/jwst-spots-a-mysterious-question-mark-in-deep-space/?fbclid=IwAR1B2U8ZxXFIRog5QqQDdIF76k_6G_ZGVtz2Q8Jzmz7grusxmvPu3i86AY4

Svemir je star 26,7 milijardi godina?

Novo istraživanje tvrdi da je svemir mnogo stariji nego što se mislilo. Prema članku koji je objavljen u uglednom časopisu Monthly Notices of the Royal Astronomical Society prošlog tjedna, svemir ima 26,7 milijardi godina, a ne 13,7 milijardi godina kako je ranije izračunato.

Glavni autor studije, prof. Rajendra Gupta, rekao je da je njegov novi model produžio vrijeme nastanka galaksije za nekoliko milijardi godina. On je koristio drugačiji model od onog koji se obično koristi u kozmologiji, zvanog Lambda-CDM, koji je napravljen prije dvije godine.

Za procjenu starosti svemira astrofizičari su mjerili vrijeme koje je prošlo od Velikog praska i tražili najstarije zvijezde i galaksije koje su vidljive na velikim udaljenostima. Međutim, otkrili su da postoje zvijezde i galaksije koje su starije od procijenjenog doba svemira, što je proturječno. Ova otkrića su omogućena zahvaljujući svemirskom teleskopu James Webb.

U svojoj studiji istraživači su koristili hibridne modele koji kombiniraju ideju o umornoj svjetlosti u proširenom svemiru, koju je prvi predložio švicarski astronom Fritz Zwicky u 20. stoljeću. Ova ideja kaže da je svjetlost koja dolazi iz drugih galaksija posljedica gubitka energije fotona na kozmičkim udaljenostima. Gupta je otkrio da je crveni pomak hibridni fenomen. Nadalje, Zwicky je također uveo koncept spregnutih konstanti, koje upravljaju interakcijom između čestica i njihovom evolucijom u obliku ranih galaksija koje je teleskop promatrao na velikim crvenim pomacima i koji se mogu produžiti na nekoliko milijardi godina, za razliku od nekoliko stotina miliona godina.

U ranom Svemiru vrijeme teklo sporije nego što sada teče

Astronomi su posmatrali efekat dilatacije vremena u dalekim dijelovima svemira, što je prvi put da je čudan efekat, koji je Albert Ajnštajn predvidio prije više od 100 godina, primijećen u ranom kosmosu.

Događaji su se dešavali pet puta sporije kada je univerzum bio star tek milijardu godina – deseti dio njegove trenutne starosti – zbog načina na koji širenje kosmosa “rasteže” protok vremena.

– Vraćajući se u vrijeme kada je univerzum bio star tek milijardu godina, vidimo da je vrijeme teklo pet puta sporije. Da ste bili prisutni, u mladom kosmosu, jedna sekunda bi se činila kao jedna sekunda, ali iz naše perspektive, više od 12 milijardi godina kasnije, to rano vrijeme čini se da se vuče – objašnjava Džerald Luis, profesor astrofizike sa Univerziteta u Sidneju.

Ajnštajn je 1915. godine rekao da se stvari u svemiru dešavaju sporije kad su dalje od nas. To je zato što se svemir širi i povlači svjetlost i vrijeme sa sobom.

Kad gledamo zvijezde kako eksplodiraju, vidimo da su one daleko i da se njihove eksplozije odvijaju polako. Ali kad gledamo kvazare, koje su još dalje i sjajnije, nismo mogli da vidimo taj efekat.

Dva naučnika iz Novog Zelanda su proučavali 190 kvazara koje su drugi gledali u zadnjih 20 godina. Oni su otkrili da se kvazari stvarno kreću sporije kad su dalje od nas, baš kao što je Ajnštajn rekao.

Jedan australijski naučnik koji je dobio Nobelovu nagradu za fiziku kaže da je to dobar dokaz za Ajnštajnovu teoriju i da nema razloga da sumnjamo u nju.

Izvor: https://www.avaz.ba/sci-tech/nauka/841472/dogadjaji-u-najranijim-periodima-kosmosa-odigravali-su-se-pet-puta-sporije-nego-danas

Šta bi moglo biti pogrešno u modernoj fizici?

Iako su fizičari postigli mnogo toga, još uvijek postoje mnoge tajne o svemiru koje ostaju neriješene. Na primjer, jedan od glavnih problema s kojim se suočava moderna fizika je pokušaj ujedinjenja svih sila prirode pod jednim krovom. Iako su fizičari uspjeli ujediniti elektromagnetizam i slabe i jake nuklearne sile, gravitacija još uvijek stoji neovisno i do danas nemamo kvantni opis gravitacije ⁴.

Također, postoje i drugi problemi poput tamne tvari i tamne energije koje su još uvijek misterija za fizičare ⁴. Postoji mogućnost da neke teorije moderne fizike budu pogrešne ili nepotpune, ali to je dio znanstvenog procesa i stalnog napretka u razumijevanju svemira oko nas.

Izvori informacija: Bing chat razgovor, 23.6.2023
(1) The problems with modern physics | Space. https://www.space.com/problems-modern-physics-universe-mysteries.html.
(2) Fizika – Wikipedija. https://hr.wikipedia.org/wiki/Fizika.
(3) Pronađen Higgsov bozon: Zašto je ovo najvažnije otkriće u modernoj fizici?. https://www.jutarnji.hr/life/znanost/pronaden-higgsov-bozon-zasto-je-ovo-najvaznije-otkrice-u-modernoj-fizici-1372959.
(4) 8. Aristotel – unizg.hr. https://www.pmf.unizg.hr/_download/repository/8._Aristotel_2021%5B3%5D.pdf.
(5) Could any theories of modern physics be wrong? – Quora. https://www.quora.com/Could-any-theories-of-modern-physics-be-wrong.
(6) Shock result in particle experiment could spark physics revolution – BBC. https://www.bbc.com/news/science-environment-60993523.

Nobelova nagrada za fiziku dodijeljena pionirima kvantne informacije

Nobelovu nagradu za fiziku 2022. zajednički su dobili Alain Aspect, John F. Clauser i Anton Zeilinger

Nobelova nagrada za fiziku 2022. zajednički je dodijeljena Alainu Aspectu, Johnu F. Clauseru i Antonu Zeilingeru za eksperimente sa zapletenim fotonima i njihov rad u pionirskoj kvantnoj informacijskoj znanosti.

Trio je osvojio 10 milijuna švedskih kruna, koje će ravnomjerno podijeliti laureati.

“Postaje sve jasnije da se pojavljuje nova vrsta kvantne tehnologije. Vidimo da je rad laureata sa zapetljanim stanjima od velike važnosti, čak i izvan temeljnih pitanja o tumačenju kvantne mehanike,” kaže Anders Irbäck, predsjednik Nobelovog odbora za fiziku.

Alain Aspect, rođen je 1947. u Agenu, Francuska. Doktorirao je 1983. na Sveučilištu Paris-Sud, Orsay, Francuska. Profesor je na Université Paris-Saclay i École Polytechnique, Palaiseau, Francuska.

John F. Clauser istraživački fizičar, SAD razvio je ideje Johna Bella, što je dovelo do praktičnog eksperimenta. Kada je izvršio mjerenja, ona su poduprla kvantnu mehaniku jasno kršeći Bellovu nejednakost. To znači da se kvantna mehanika ne može zamijeniti teorijom koja koristi skrivene varijable.

Anton Zeilinger, profesor na Sveučilištu u Beču, Austrija koristeći rafinirane alate i duge nizove eksperimenata. Anton Zeilinger je počeo koristiti zapletena kvantna stanja. Između ostalog, njegova istraživačka skupina demonstrirala je fenomen nazvan kvantna teleportacija, koji omogućuje premještanje kvantnog stanja s jedne čestice na drugu na velikoj udaljenosti.

Profesor na Université Paris-Saclay i École Polytechnique, Palaiseau, Francuska Alain Aspect razvio je postavku, koristeći je na način da zatvori važnu rupu u zakonu koja je ostala nakon rada Johna Clausera. Uspio je promijeniti postavke mjerenja nakon što je zapleteni par čestica napustio svoj izvor, tako da postavka koja je postojala kada su emitirani nije mogla utjecati na rezultat.

Izvor: https://www.nobelprize.org/

Zapanjujuće svemirske fotografije James Web teleskopa otkrivaju ‘strukture za koje ni ne znamo šta su’

NASA je otkrila 5 novih nevjerovatnih fotografija sa svemirskog teleskopa James Webb, uključujući zvijezde koje nikada nismo vidjeli i “strukture za koje, iskreno, ne znamo ni šta su”.

NASA je u utorak otkrila pet zapanjujućih slika sa svemirskog teleskopa James Webb—najmoćnijeg teleskopa ikada lansiranog u svemir, trenutno udaljen milion kilometara.

JWST je najnoviji i najbolji način čovječanstva da se pogleda duboko u kosmos, sve do perioda neposredno nakon Velikog praska. Teleskop je 100 puta moćniji od Hubblea i sposoban je uhvatiti veće infracrvene valne dužine, što će mu omogućiti da vidi galaksije koje su udaljenije ili sa velikim crvenim pomakom. Svemir je radoznao jer gledanje dalje u daljinu znači i da gledamo u prošlost, pa tako u potrazi za najstarijim zvijezdama i galaksijama, JWST efektivno gleda na početak vremena i prostora.

“Ovo je naša vremenska mašina,” rekao je dr. John Mather, viši naučnik projekta za Webb, tokom NASA-inog emitovanja u utorak. Naravno, Web će se koristiti i za stvaranje više uvida o objektima koji su nam bliži, a ta sposobnost je bila pun prikaz tokom prve velike slike teleskopa.

Prva slika: Duboko polje

Svjetlost zvijezda i galaksija na ovoj slici dolazi prije više od 13 milijardi godina – Veliki prasak se dogodio prije 13,8 milijardi godina, što znači da ova slika prikazuje trenutak nedugo nakon svitanja vremena. Gravitacija klastera iskrivljuje ono što je iza njih, efekat koji se zove “socivanje”, tako da neki objekti izgledaju zamrljano, jer se uvećavaju. Uvećajte ga da otkrijete divlje detalje.

Druga slika: Egzoplaneta

Ovo je “indirektna” slika; vizuelne slike iz svemira se često rekonstruišu iz svetlosnih podataka, tako da je ovo nekako sirovi set. Iako nije tako vizuelno privlačan kao duboko polje, sadrži gomilu informacija za naučnike. Ovo je spektar egzoplanete WASP-96 b, gasnog giganta koji se nalazi 1.120 svjetlosnih godina od Zemlje. Neravnine i pokreti ukazuju na vodenu paru u atmosferi. U budućnosti će biti mnogo više ovakvih podataka sa drugih planeta i asteroida.

Treća slika: Smrt zvijezde

Ovo je izgled, i dva-fer za podizanje. To je vrlo detaljna bliska infracrvena slika magline zvane Južni prsten, koju je izazvala umiruća zvijezda, udaljena 2.500 svjetlosnih godina. “Pjenasti” prsten oko magline uzrokovan je molekularnim vodonikom koji nastaje masivnom eksplozijom. “Zraci” su zapravo rupe u unutrašnjoj maglini koje omogućavaju svjetlosti zvijezde da sija. U središtu magline su dvije zvijezde – naučnici su znali da je Južni prsten binarni zvjezdani sistem, ali sada ih možemo jasno vidjeti.

Četvrta slika: Galaksije

Ovo je slika Stephanovog kvinteta, koji je bliska grupa galaksija koju je prvi otkrio Edouard Stephan 1877. godine. Na fotografiji ih je pet, ali to je malo vizuelni trik. Jedna od galaksija je udaljena oko 40 miliona svjetlosnih godina od Zemlje, ali ostale četiri su istinska kompaktna grupa, a sve one postoje između 210 miliona i 340 miliona svjetlosnih godina od nas. U određenom smislu, to je fotografija koja nas vodi iz obližnjeg, modernog univerzuma, pa sve do drevnog svemira.

Peta slika: Rađanje zvijezde

Ovo je slika “zvjezdanog rasadnika”, regije u kojoj se rađaju nove zvijezde, i prikazuje zvijezde bebe koje su ranije bile skrivene od našeg pogleda. Fokus je na maglini Carina, koja je područje za formiranje zvijezda upravo ovdje u Mliječnom putu. Uprkos tome, Webbova slika otkriva stotine novih zvijezda i kosmičke “strukture za koje, iskreno, ne znamo ni šta su”, kaže Amber Straughn, zamjenica projektnog naučnika za JWST, koja je predstavila fotografiju.

Izvor: https://www.vice.com/en/article/qjk8np/mind-blowing-james-webb-space-photos-reveal-structures-that-we-dont-even-know-what-they-are

Je li standardni model fizike sada slomljen? – Sabine Hossenfelder

Takozvana anomalija muona, prvi put viđena u eksperimentu u Brookhaven National Laboratory 2001. godine, nije pomaknula s mjesta. Tokom 20 godina, ovaj lagani nesklad između izračunate vrijednosti magnetskog momenta muona i eksperimentalno određenog, zadržao se na značaju od oko 3,7 sigme. To je nivo pouzdanosti od 99,98 posto, ili otprilike jedna prema 4.500 šansi da je odstupanje slučajna fluktuacija. Upravo objavljenim rezultatima eksperimenta Muon g-2 iz Nacionalne laboratorije Fermi u Bataviji, Ilinois, značaj je povećan na 4,2 sigma. To je nivo pouzdanosti od oko 99,997 posto, ili otprilike jedna od 40 000 šansi da opaženo odstupanje bude slučajnost. Samo po sebi, novo mjerenje Fermilaba ima značaj samo 3,3 sigme, ali budući da reproducira raniji nalaz iz Brookhavena, kombinirani značaj porastao je na 4,2 sigme. Ipak, to je ispod praga otkrivanja fizičara čestica od pet sigma.

Rezultat je dugo očekivan zbog njegove mogućnosti da konačno razbije Standardni model fizike čestica, zbirku do sada poznatih temeljnih sastojaka materije koji postoji oko 50 godina. Ovaj model trenutno sadrži nekoliko tuceta čestica, ali većina ih je nestabilna i stoga ih nije moguće pronaći samo promatranjem materije koja nas obično okružuje. Nestabilne čestice su, međutim, prirodno proizvedene u visokoenergetskim događajima, na primjer kada kosmički zraci udaraju u gornji sloj atmosfere. Izrađuju se i u sudarima čestica stvorenih u laboratoriju, poput onih koji se koriste u Fermilabovim eksperimentima za mjerenje magnetskog momenta miona.

Muon je bila jedna od prvih nestabilnih čestica koja je poznata, a njegovo otkriće datira iz 1936. godine. Teža je verzija elektrona, a poput potonje čestice i električno je nabijena. Životni vijek miona je oko dvije mikrosekunde. Za fizičare čestica to je dugo, zbog čega se čestica pridaje preciznim mjerenjima. Munski magnetni moment određuje koliko brzo rotacija osi čestice kruži oko linija magnetskog polja. Da bi ga izmjerili na Fermilabu, fizičari stvaraju muone i snažnim magnetima ih drže u krugu promjera oko 15 metara. Mioni se na kraju raspadaju, a iz raspodjele produkata raspada može se zaključiti njihov magnetski moment.

Rezultat se obično navodi kao “g-2”, gdje je “g” magnetski moment. “2” je uključen jer je vrijednost blizu dva – a u odstupanjima od dva kvantni su doprinosi koji su fizičari interesantni. Ti doprinosi dolaze iz fluktuacija vakuuma koji sadrže sve čestice, iako u virtualnom obliku: pojavljuju se samo nakratko prije nego što ponovo nestane. To znači da ako ima više čestica od onih u Standardnom modelu, one bi trebale doprinijeti muonu g-2 – otuda i njegova važnost. Stoga bi odstupanje od predviđanja Standardnog modela moglo značiti da postoji više čestica od onih koje su trenutno poznate – ili da postoji neka druga nova fizika, poput dodatnih dimenzija prostora.

Pa kako da procijenimo nesklad od 4,2 sigme između predviđanja Standardnog modela i novog mjerenja? Prije svega, korisno je sjetiti se razloga zbog kojeg fizičari čestica za početak koriste standard od pet sigma. Razlog nije toliko u tome što je fizika čestica nekako suštinski preciznija od ostalih područja znanosti ili što su fizičari čestica toliko bolji u obavljanju eksperimenata. Prvenstveno je to što fizičari čestica imaju puno podataka. I što više podataka imate, veća je vjerojatnost da ćete pronaći slučajne fluktuacije koje slučajno izgledaju poput signala. Fizičari čestica počeli su uobičajeno koristiti kriterij pet sigma sredinom 1990-ih kako bi se spasili od sramote zbog previše „otkrića“ koja su se kasnije ispostavila kao puka statistička fluktuacija.

Ali naravno, pet sigma je potpuno proizvoljan rez, a fizičari čestica također raspravljaju o anomalijama znatno ispod te granice. Zaista, tijekom godina došlo je i nestalo podosta anomalija od tri i četiri sigme. Na primjer, Higgsov bozon je već bio „otkriven“ 1996. godine, kada se signal od oko četiri sigme pojavio na Velikom elektronsko-pozitronskom sudaraču (LEP) u CERN-u blizu Ženeve – a zatim je ponovo nestao. (Higgsa je 2012. godine definitivno otkrio LEP-ov nasljednik, Veliki hadronski sudarač ili LHC.) Također 1996. pronađene su supstrakture kvarkova na oko tri sigme. I one su nestale.

Godine 2003. znaci supersimetrije – pretpostavljeno proširenje Standardnog modela koje uvodi nove čestice – viđeni su na LEP-u, takođe oko tri sigme. Ali ubrzo su nestali. Na LHC-u 2015. godine vidjeli smo anomaliju difotona koja se zadržala oko četiri sigme prije nego što je nestala. Bilo je i nekih zapanjujućih otkrića od šest sigma koja nisu potvrđena, poput “super-mlaznjaka” iz 1998. godine na Fermilabovom Tevatronu (čak i sada niko zapravo ne zna šta su bili) ili viđenja pentakvarka 2004. godine na akceleratoru HERA u Njemačkoj (pentakvarkovi zapravo nisu otkriveni do 2015).

Ova povijest trebala bi vam pomoći da procijenite koliko ozbiljno trebate shvatiti bilo koju tvrdnju iz fizike čestica sa statističkom značajnošću od 4,2 sigma. Ali naravno, anomalija g-2 ide u prilog činjenici da je njen značaj postao jači, a ne slabiji.

Šta znači postojanost anomalije? Eksperimenti visoke preciznosti na niskoj energiji, poput ovog, dopunjuju eksperimente visoke energije. Oni mogu pružiti slične informacije jer su, u principu, svi doprinosi visokih energija prisutni i kod niskih energija. Samo što su vrlo mali – govorimo o neskladu između eksperimenta i teorije na 11. znamenci nakon decimalne točke.

U praksi to znači da proračuni za predviđanja moraju tačno uzeti u obzir puno sitnih doprinosa da bi se postigla potrebna preciznost. U fizici čestica, ovi proračuni se rade pomoću Feynmanovih dijagrama – malih grafika s čvorovima i vezama koji označavaju čestice i njihove interakcije. Oni su matematički alat za praćenje kojih se integrala mora izračunati.

Ovi proračuni se uključuju u veću preciznost, jer ima više i većih dijagrama. Za muon g-2 fizičari su morali izračunati više od 15.000 dijagrama. Iako računari uvelike pomažu u zadatku, ovi proračuni ostaju prilično izazovni. Posebna glavobolja je hadronski doprinos. Adroni su kompozitne čestice izrađene od nekoliko kvarkova koje gluoni drže zajedno. Izračun ovih hadronskih doprinosa vrijednosti g-2 notorno je težak, a trenutno je najveći izvor pogrešaka na teoretskoj strani. Postoje naravno i različita unakrsna mjerenja koja igraju ulogu, poput predviđanja koja ovise o vrijednostima drugih konstanti, uključujući mase leptona i konstante sprezanja.

Prema tome, nesklad bi mogao prilično svakodnevno značiti da nešto nije u redu s izračunatim Standardnim modelom s hadronskim doprinosima. Ali postoji i mogućnost da se nedostatak krije u samom Standardnom modelu, a ne u našoj kalkulaciji. Možda neslaganje dolazi od novih čestica – supersimetrične čestice su najpopularniji kandidati. Problem s ovim objašnjenjem je da supersimetrija nije model – već je svojstvo velikog broja modela, a različiti modeli iz te veće cjeline daju različita predviđanja. Između ostalog, doprinos g-2 ovisi o masi hipotetičkih supersimetričnih čestica, koje su nepoznate. Tako da je za sada nemoguće posebno pripisati nesklad supersimetriji.

Fermilabovo novo visoko precizno mjerenje magnetskog momenta izuzetno je eksperimentalno postignuće. Ali prerano je da Standardni model proglasimo slomljenim.

Izvor: https://www.scientificamerican.com/article/is-the-standard-model-of-physics-now-broken/