Category Archives: Kvantna biologija

Kada su se prvi ljudi pojavili na planeti Zemlji?

Kada je naša planeta bila stara četiri milijarde godina, uspon velikih biljaka i životinja tek je počeo. Složenost je eksplodirala otprilike u to vrijeme, jer je kombinacija višećelijske, seksualne reprodukcije i drugih genetskih napretka dovela do kambrijske eksplozije. Mnoge evolucijske promjene dogodile su se u narednih 500 miliona godina, s izumiranjem i pritiscima selekcije koji su utrli put za nastanak i razvoj novih oblika života.

Prije 65 miliona godina, katastrofalni udar asteroida zbrisao je ne samo dinosauruse, već i gotovo svaku životinju tešku preko 25 kg (osim kožnih morskih kornjača i nekih krokodila). Ovo je bilo posljednje veliko masovno izumiranje Zemlje i ostavilo je veliki broj neispunjenih niša za sobom. Sisavci su postali istaknuti nakon toga, a prvi ljudi su nastali prije manje od milion godina. Evo naše priče.

Prije 65 miliona godina, masivni asteroid prečnika između 5 i 10 kilometara udario je u našu planetu. Podigao je sloj prašine koji se taložio po cijelom svijetu, sloj koji se danas može naći u sedimentnim stijenama naše planete. Na starijoj strani tog sloja nalaze se fosili poput dinosaura, pterosaura, ihtiosaura i plesiosaura. Džinovski gmizavci, amoniti i velike klase biljaka i životinja postojale su prije tog događaja, zajedno s malim pticama koje lete i sićušnim sisavcima koji žive na kopnu.

Nakon tog događaja, sisari su preživjeli. Bez većih grabežljivaca koji bi ih zaustavili, rasli su, diverzificirali se i doživjeli populacijsku eksploziju. Primati, glodari, lagomorfi i drugi oblici sisara, uključujući placentne sisare, tobolčare, pa čak i sisare koji leže jaja, su brojni na početku kenezojske epohe.

Gotovo odmah, primati su počeli još više da se diverzificiraju. Prije 63 miliona godina — samo 2 miliona godina nakon smrti dinosaurusa — podijelili su se u dvije grupe.

Primati sa suhim nosom, formalno poznati kao haplorini, koji su se razvili u moderne majmune i stare majmune.
Primati s vlažnim nosom, poznati kao strepsirrine, koji su se razvili u moderne lemure i aye-ay.

Prije 58 miliona godina dogodila se još jedna velika promjena: haplorini su doživjeli zanimljiv genetski rascjep, jer se prva nova i jedinstvena evolucijska grana razlikovala od ostalih primata suhog nosa: tarsier. Sa svojim ogromnim očima, bio je jedinstveno dobro prilagođen da vidi noću.

Niša koju je sada zauzela bila je dovoljno različita od preostalih grupa naših predaka da su od ovog trenutka dalje evoluirali drugačije od ostalih svojih rođaka. Ova vrsta evolucijskog cijepanja događa se s vremena na vrijeme i nije jedinstvena za primate.

Iako obično ne razmišljamo mnogo o našim dalekim rođacima i kako se oni razvijaju nakon što se odvoje od nas, nisu samo haplorini poput nas (i naših direktnih predaka) prošli kroz zanimljive faze evolucije. U proteklih 65 miliona godina — baš kao što je bilo prije tog vremena — razni sisari, ptice, biljke i drugi živi organizmi evoluirali su zajedno. Evolucija je vođena promjenama okoliša, a to uključuje i sve cvjetne i faunističke promjene koje se dešavaju na našoj planeti.

Prije 55 miliona godina, nagli porast stakleničkih plinova doveo je do brzog porasta globalne prosječne temperature, izbrisavši mnoge životinje i biljke u dubokom okeanu. Ova transformacija ostavila je mnoge velike, nepopunjene niše u okeanu, utirući put za razvoj kitova (velikih okeanskih sisara).

Prije 50 miliona godina, neki od sisavaca s parnim prstima počeli su evoluirati u morska bića. Artiodaktili su možda svi evoluirali od jednog zajedničkog pretka ili su evoluirali nezavisno. Životinje kao što je Indohyus, koji datira prije 48 miliona godina, možda su dovele do protocetida: sisara u plitkim vodama koji su se vratili na kopno da bi rodili.

Otprilike u to vrijeme, prije 47 miliona godina, postojao je primat Darwinius masillae, jer fosil Ida, sačuvan iz tog vremena, pruža spektakularan primjer. Iako je ovo prvobitno reklamirano kao poslovična „karika koja nedostaje“ u ljudskoj evoluciji, Ida nije haplorin kao mi, već strepsirena: primat vlažnog nosa.

Ali još 7 miliona godina kasnije — prije 40 miliona godina — dogodio se važan razvoj među primatima suhog nosa: majmuni Novog svijeta su se razgranali. Ljudi i naši preci majmuna potječu od majmuna Starog svijeta; Majmuni Novog svijeta su prvi majmuni (ili viši primati) koji su evolucijski odstupili od naše loze. Oni bi kolonizirali veći dio Južne Amerike, gdje ih i danas ima u izobilju.

Majmuni Starog svijeta nastavljaju napredovati i uspješno zauzimaju svoje niše, dok se diverzificiraju u veličini tijela i fizičkim karakteristikama. Prije 25 miliona godina evoluirali su prvi majmuni, odvojivši se od preostalih majmuna Starog svijeta u to vrijeme. Majmuni — definirani potpunim nedostatkom repa bilo koje vrste — bi potom dali povoda mnogim bliskim srodnicima ljudi koji prežive danas: i manjim i velikim majmunima.

Najraniji majmun koji se odvojio od majmuna Starog svijeta bio je Gibon, manji majmun koji se prvi put pojavio prije 18 miliona godina.

Prije negdje između 14 i 16 miliona godina pojavili su se prvi veliki čovjekoliki majmuni, a orangutani su se razgranali prije 14 miliona godina. Orangutani su se nakon toga proširili u južnu Aziju, dok su ostali veliki majmuni ostali u Africi. Najveći primat ikada, Gigantopithecus, prvi je put nastao prije nekih 9 miliona godina, a izumro je tek prije nekoliko stotina hiljada godina.

Prije 7 miliona godina, gorile su se odvojile od drugih velikih majmuna; oni ostaju najveći od svih preživjelih primata.

Veliki majmuni su se prije 6 miliona godina odvojili u dva smjera, pri čemu je jedan smjer doveo do ljudskih predaka, a drugi ogranak doveo do čimpanza i bonoba. Grana šimpanza/bonobo ostaje ujedinjena još 4 miliona godina, s našim najbližim preživjelim rođacima — čimpanzama i bonoboima — koji se razilaze jedni od drugih prije samo 2 miliona godina.

Ali na tragu naših direktnih predaka, razvoj je bio brz i dubok. Prije 5,6 miliona godina nastao je prvi istinski dvonožni majmun, Ardipithecus. Iako je to kontroverzna tvrdnja, kosti šake u Ardipithecusu pokazuju dokaze da je to prijelazni fosil između ranijih velikih majmuna i kasnijih australopiteka.

Prije otprilike 4 miliona godina evoluirao je prvi Australopithecus: prvi članovi podplemena Hominina (taksonomska klasifikacija specifičnija od porodice, ali manje specifična od roda). Ubrzo nakon toga, pojavljuju se prvi dokazi o korištenju kamenog oruđa: trenutno prije 3,4 do 3,7 miliona godina.

Ključni evolucijski korak dogodio se prije nešto više od 2 miliona godina, kada su se naši preci hominida suočili s nestašicom hrane. Jedan evolucijski uspješan pristup bio je razvoj jačih čeljusti, što nam je dalo mogućnost da jedemo hranu (poput orašastih plodova) koja je inače bila nedostupna. Ali drugi pristup je također bio uspješan: razviti slabije čeljusti i veći mozak, što nam je omogućilo pristup hrani.

Dok su obje grupe opstale neko vrijeme, grupa sa većim mozgom bila je prilagodljivija promjenama i nastavile su preživljavati. Ovo je evolucijski put za koji mislimo da je doveo do razvoja roda Homo, koji je prvi nastao prije oko 2,5 miliona godina. Homo habilis, kolokvijalno poznat kao “ručni čovjek”, imao je veći mozak od svojih kolega Australopithecusa i pokazao je daleko rasprostranjeniju upotrebu alata.

Prije otprilike 1,9 miliona godina evoluirao je Homo erectus. Ovaj ljudski predak ne samo da je hodao potpuno uspravno, već je imao mnogo veći mozak od Homo habilisa: u prosjeku gotovo dvostruko veći. Homo erectus je postao prvi direktni ljudski predak koji je napustio Afriku i prvi koji je pokazao dokaze o korištenju vatre. Homo habilis je vjerovatno bio doveden do izumiranja prije više od milion godina, kao i posljednji Australopithecus.

Širom svijeta pojavili su se novi primjeri roda Homo, uključujući Homo antecessor u Evropi (koji može biti evoluirani habilis ili erectus, ili rani oblik heidelbergensis) prije oko 1,2 miliona godina, a zatim Homo heidelbergensis prije nekih 600.000 godina. Prije otprilike 700.000 godina, pojavljuju se najraniji dokazi o kuhanju; prije oko 500.000 godina pojavljuju se prvi dokazi o odjeći.

Prije otprilike 300.000 godina, prvi Homo sapiens — anatomski moderni ljudi — nastali su zajedno s našim drugim rođacima hominida. Nepoznato je da li smo potekli direktno od Homo erectusa, heidelbergensisa ili prethodnika, iako su neandertalci, koji su došli nešto kasnije, prije 240.000 godina, sasvim sigurno došli od Homo heidelbergensisa. Smatra se da je moderni govor nastao skoro čim se pojavio Homo sapiens.

Bilo je potrebno 13,8 milijardi godina kosmičke istorije da stignu prva ljudska bića, a mi smo to učinili relativno nedavno: prije samo 300.000 godina. U 99,998% vremena koje je prošlo od Velikog praska uopšte nije bilo ljudskih bića; cijela naša vrsta postoji samo za posljednjih 0,002% svemira. Ipak, za to kratko vrijeme uspjeli smo odgonetnuti cijelu kosmičku priču koja je dovela do našeg postojanja. Na sreću, priča se neće završiti kod nas, jer se još piše.

Izvor: https://bigthink.com/starts-with-a-bang/first-humans-on-earth/

Tvoj mozak je mašina za predviđanja koja je uvijek aktivna

Mozak stalno djeluje kao mašina za predviđanje, kontinuirano uspoređujući senzorne informacije sa unutrašnjim predviđanjima.

Za svaku riječ ili zvuk, mozak daje detaljna statistička očekivanja i ispostavlja se da je izuzetno osjetljiv na stepen nepredvidivosti: reakcija mozga je jača kad god je riječ neočekivana u kontekstu.

„Samo po sebi, ovo nije mnogo iznenađujuće: na kraju krajeva, svi znaju da ponekad možete predvidjeti nadolazeći jezik. Na primjer, vaš mozak ponekad automatski ‘popuni prazninu’ i mentalno dovršava tuđe rečenice, na primjer ako počne govoriti vrlo sporo, zamuckuje ili ne može smisliti nijednu riječ. Ali ono što smo ovdje pokazali je da se to dešava kontinuirano. Naš mozak neprestano pogađa riječi; mašinerija za predviđanje je uvek uključena.”

“U stvari, naš mozak radi nešto što se može uporediti sa softverom za prepoznavanje govora. Prepoznavači govora koji koriste vještačku inteligenciju također stalno predviđaju i dopuštaju sebi da budu vođeni svojim očekivanjima, baš kao i funkcija automatskog dovršavanja na vašem telefonu.

“Ipak, primijetili smo veliku razliku: mozak ne predviđa samo riječi, već i predviđa na mnogo različitih nivoa, od apstraktnog značenja i gramatike do specifičnih zvukova.”

Izvor: https://neurosciencenews.com/prediction-brain-21183/

Kako je život nastao na Zemlji?

Čovjek se oduvijek pitao kako je nastao, tko ga je stvorio i zašto je stvoren. Pitanja takve prirode postavljana su kroz čitavu ljudsku povijest. Svaki drevni mislilac, filozof ili prorok pokušao je dati odgovor na ovo pitanje i predložiti neki mehanizam za rađanje života.

Čovjek je samo mali dio života. U stvarnosti postoji ogromna raznolikost stvorenja koja se zadržavaju oko nas. Kako su nastali? Jesmo li u bilo kakvom srodstvu s njima? Ovaj članak predlaže vam povratak u daleku prošlost kada na našoj planeti nije bilo života i pomaže vam da zamislite kako je život mogao nastati na njoj.

Panspermija

Prema starogrčkoj ideji, život postoji u cijelom svemiru. Distribuira se na različitim planetima u malim jedinicama kroz svemirsku prašinu, meteoroide, asteroide ili komete. Pretpostavljalo se da će pod povoljnim uvjetima temperature i vlage ove jedinice života oživjeti i roditi početna živa bića.

Vrlo je poznata činjenica da je kozmička prašina prisutna u svemiru. Hoyle i Wickramasinghe 1974. godine predložili su hipotezu da većina prašine u međuzvijezdanom prostoru mora biti uglavnom organska, da bi se život širio, što je Wickramasinghe kasnije pokazao tačnim.

Ali Panspermia pretpostavlja da u univerzumu postoji univerzalno spremište života i na taj način doista izbjegava odgovoriti na pitanje kako je život uopće nastao.

Božansko stvaranje

Jedno vjerovanje, uobičajeno među ljudima svih kultura, jest da su svi različiti oblici života, uključujući i ljudska bića, iznenada stvoreni božanskim djelovanjem prije otprilike 10 000 godina. Taj veliki broj stvorenja uvijek je bio isti i trajat će bez promjene od generacije do generacije, sve do svršetka svijeta.

Takva teorija stvaranja je neuvjerljiva jer fosili biljaka i životinja sugeriraju da je život mnogo starijeg podrijetla. Zapravo, neka istraživanja pokazuju da je život na Zemlji postojao i prije 3,5 milijarde godina.

Spontana generacija

Teorija poznata kao spontano generiranje držala je da složeni živi organizmi mogu nastati iz neživih predmeta. Miševi se mogu spontano pojaviti u uskladištenom zrnu ili se crvi mogu spontano pojaviti u mesu. Sintetizirao ju je grčki filozof i biolog Aristotel.

Prema Aristotelu, životinje i biljke nastaju u zemlji i u tekućini jer u zemlji postoji voda, a zrak u vodi, a u cijelom je zraku vitalna toplina tako da su u određenom smislu sve stvari pune duše. Stoga se živa bića brzo stvaraju kad god su ovaj zrak i vitalna toplina u bilo čemu zatvoreni.

Aristotelov utjecaj bio je tako velik i snažan da je njegov konstrukt spontane generacije ostao neupitan više od dvije hiljade godina. Prema Aristotelu to je bila lako uočljiva istina. No, talijanski je biolog Franceso Redi 1668. godine dokazao da se u mesu nisu pojavili crvi kad muhe nisu mogle položiti jaja.

Slika 1: Kada je tegla zatvorena i nema muha, nema ni crva u mesu.

Spontano stvaranje više nije diskutabilno među biolozima. Do sredine 19. stoljeća eksperimenti Louisa Pasteura i drugih pobijali su tradicionalnu teoriju spontanog stvaranja i podržavali biogenezu, ideju da samo život rađa život.

Hemijska evolucija

Život kakav poznajemo temelji se na molekulama koje sadrže ugljik. Stoga su sovjetski biohemičar, Oparin i britanski biolog Haldane, sugerirali da je život mogao nastati iz jednostavnih organskih molekula. Drugim riječima, da bi se razumjelo podrijetlo života, mora se znati o organskim molekulama na Zemlji.

Rana Zemlja bila je vruća vatrena kugla. Izvori energije poput kozmičkih zraka, UV zračenja, električnog pražnjenja munja i topline vulkana bili su lako dostupni. Stoga je zemlja djelovala poput velike tvornice koja dnevno proizvodi hiljade spojeva. Ovo je bilo stanje uznemirenosti.

U tim teškim uvjetima kisik nije mogao ostati slobodan kisik. Kombiniran je s drugim elementima u spojevima poput vode i vapnenca. Također su nastali spojevi ugljika i vodika, poput metana. Dušik i vodik kombinirani u amonijak. Ti se spojevi danas nazivaju organskim spojevima.

S vremenom je Zemlja počela da se hladi. Kako se dovoljno hladilo, uslijed kondenzacije pare nastale su dugotrajne kiše. Kiše su se počele nakupljati u udubljenjima na Zemlji i tako su nastali oceani. Voda je bila topla i nalik juhi, a sadržavala je razne vrste organskih molekula.

Interakcija između ovih spojeva u toplim vodama rezultirala je stvaranjem još više spojeva, koji su između ostalog sadržavali i aminokiseline u sastavu ugljika, vodika, dušika i kisika. Te se aminokiseline u velikom broju kombiniraju jedna s drugom i tvore proteine koji su građevni blokovi života.

Miller-Ureyev eksperiment

U raspravi o događajima koji su se morali dogoditi prije milijarde godina, postoji određena količina nagađanja i nesigurnosti. Ali obrazloženje mora biti u skladu s velikim brojem dostupnih dokaza, kao i s osnovnim zakonima fizikalnih znanosti.

Gornja ideja mogla bi se testirati ponovnim stvaranjem predloženih uvjeta rane Zemlje u laboratoriju.

Godine 1952. američki biohemičari Stanley Miller i Harold Urey učinili su potpuno istu stvar, ali u vrlo malom opsegu. Plinovitu smjesu metana, amonijaka, vodene pare i vodika u zatvorenoj tikvici na 80 Celzijevih stepeni podvrgavali su električnom iskrenju sedam dana.

Kada su pregledali 7 dana kasnije, utvrdili su da su se na dnu stvorile jednostavne aminokiseline, koje su neophodne za stvaranje proteina. Miller i Urey su pokazali da se nekoliko organskih jedinjenja može spontano formirati simuliranjem uslova rane Zemljine atmosfere, kako pretpostavljaju Oparin i Haldane.

Elementi života, koje čovjek proizvodi u laboratoriju.

Naučna zajednica širom svijeta bila je impresionirana ovim postignućem. Zapravo, tri godine nakon uspjeha Milerovog eksperimenta, američki fizičar Richard Feynman napisao je pjesmu pod naslovom atom u svemiru, slaveći čovjekovo znanje o porijeklu života na Zemlji.

Miller je nastavio svoja istraživanja sve do svoje smrti 2007. Ne samo da je uspio sintetizirati sve više i više vrsta aminokiselina, već je također proizveo širok spektar anorganskih i organskih spojeva vitalnih za ćelijsku izgradnju i metabolizam. Pozdravljamo napore takvog naučnika koji je svoj život posvetio proučavanju najvažnijeg pitanja poznatog čovjeku.

Izvor: https://www.wondersofphysics.com/2019/01/origin-of-life.html?m=1

Šta je to kvantni um?

Kvantni um ili kvantna svijest je grupa hipoteza koje sugeriraju da klasična mehanika ne može objasniti svijest. Kaže da kvantno-mehanički fenomeni, poput preplitanja i superpozicije, mogu igrati važnu ulogu u funkciji mozga i objasniti svijest.

Tvrdnje da je svijest nekako kvantno-mehanička mogu se preklopiti s kvantnom mistikom, pseudoznanstvenim pokretom koji dodjeljuje natprirodne karakteristike raznim kvantnim fenomenima poput nelokalnosti i efekta promatrača.



Historija
Eugene Wigner razvio je ideju da kvantna mehanika ima neke veze sa radom uma. Predložio je da se talasna funkcija urušava zbog interakcije sa sviješću. Freeman Dyson tvrdio je da je “um, što se očituje sposobnošću donošenja izbora, u određenoj mjeri svojstven svakom elektronu.”

Drugi suvremeni fizičari i filozofi smatrali su ove argumente neuvjerljivim. Victor Stenger okarakterizirao je kvantnu svijest kao “mit” koji nema “nikakvu naučnu osnovu” koji bi “trebao zauzeti svoje mjesto zajedno s bogovima, jednorozima i zmajevima.”

David Chalmers argumentira protiv kvantne svijesti. Umjesto toga, raspravlja o tome kako se kvantna mehanika može povezati s dualističkom sviješću. Chalmers je skeptičan da bilo koja nova fizika može riješiti težak problem svijesti.

Pristup kvantnog uma
Bohm
David Bohm smatrao je kvantnu teoriju i relativnost kontradiktornim, što podrazumijeva temeljniji nivo u svemiru. Tvrdio je da su i kvantna teorija i relativnost ukazale na ovu dublju teoriju, koju je formulisao kao kvantnu teoriju polja. Ovaj temeljniji nivo predložen je da predstavlja nepodijeljenu cjelovitost i implicirani poredak, iz kojeg proizlazi eksplicirani poredak svemira kakav ga doživljavamo.

Bohmov predloženi implicitni poredak odnosi se i na materiju i na svijest. Sugerirao je da bi to moglo objasniti odnos između njih. Um i materiju vidio je kao projekcije u naš eksplicirani poredak iz osnovnog impliciranog poretka. Bohm je tvrdio da kada gledamo materiju, ne vidimo ništa što bi nam pomoglo da razumijemo svijest.



Bohm je razgovarao o iskustvu slušanja muzike. Vjerovao je da osjećaj pokreta i promjene koji čine naše glazbeno iskustvo proizlazi iz držanja neposredne prošlosti i sadašnjosti u mozgu. Glazbene note iz prošlosti prije su transformacije nego sjećanja. Bilješke koje su bile implicirane u neposrednoj prošlosti postaju eksplikativne u sadašnjosti. Bohm je ovo smatrao sviješću koja izranja iz impliciranog poretka.

Bohm je pokret, promjenu ili protok i koherentnost iskustava, poput slušanja muzike, vidio kao manifestaciju impliciranog reda. Tvrdio je da dokaze za to izvodi iz djela Jean Piaget-a o dojenčadi. Održao je ove studije kako bi pokazao da mala djeca uče o vremenu i prostoru jer imaju “čvrsto povezano” razumijevanje pokreta kao dijela impliciranog poretka. Uporedio je ovo čvrsto povezivanje s Chomskyjevom teorijom da je gramatika čvrsto povezana u ljudski mozak.

Bohm nikada nije predložio konkretno sredstvo kojim bi se njegov prijedlog mogao falsificirati, niti neuronski mehanizam putem kojeg bi se njegov “implicirani poredak” mogao pojaviti na način relevantan za svijest. Kasnije je surađivao na holonomskoj teoriji mozga Karla Pribrama kao modela kvantne svijesti.

Prema filozofu Paavu Pylkkänenu, Bohmova sugestija “prirodno vodi do pretpostavke da je fizički korelat procesa logičkog mišljenja na klasično opisivoj razini mozga, dok je osnovni proces razmišljanja na kvantno-teorijski opisivoj razini”.

Penrose i Hameroff

Teoretski fizičar Roger Penrose i anesteziolog Stuart Hameroff surađivali su u stvaranju teorije poznate kao Orchestrated Objective Reduction (Orch-OR). Penrose i Hameroff u početku su razvijali svoje ideje odvojeno, a kasnije su surađivali u proizvodnji Orch-OR-a početkom 1990-ih. Oni su svoju teoriju pregledali i ažurirali 2013. godine

Penroseov argument proizašao je iz Gödelovih teorema nepotpunosti. U svojoj prvoj knjizi o svijesti, Carev novi um (1989.), tvrdio je da iako formalni sistem ne može dokazati vlastitu dosljednost, Gödelove nedokazive rezultate dokazuju ljudski matematičari. Penrose je ovo shvatio da ljudski matematičari nisu formalni dokazni sustavi i ne pokreću računski algoritam. Prema Bringsjordu i Xiaou, ova linija razmišljanja temelji se na pogrešnoj dvosmislenosti o značenju računanja. U istoj je knjizi Penrose napisao: “Međutim, moglo bi se pretpostaviti da se negdje duboko u mozgu mogu naći ćelije pojedinačne kvantne osjetljivosti. Ako se to pokaže, kvantna mehanika će biti značajno uključena u aktivnost mozga . “

Penrose je utvrdio da je kolaps valne funkcije bio jedina moguća fizička osnova za neizračunljiv proces. Nezadovoljan njegovom slučajnošću, predložio je novi oblik kolapsa valne funkcije koji se događa izolirano i nazvao ga objektivnom redukcijom. Predložio je da svaka kvantna superpozicija ima svoj dio prostorno-vremenske zakrivljenosti i da kada se odvoje od više od jedne Planckove dužine postanu nestabilne i urušavaju se. Penrose je sugerirao da objektivna redukcija ne predstavlja slučajnost ni algoritamsku obradu, već neizračunljiv utjecaj u geometriji prostora i vremena iz kojeg proizlazi matematičko razumijevanje i, kasnije, svijest.

Hameroff je iznio hipotezu da bi mikrotubule bile pogodni domaćini za kvantno ponašanje. Mikrotubule se sastoje od dimernih podjedinica proteina tubulina. Svaki od dimera ima hidrofobne džepove koji su međusobno udaljeni 8 nm i mogu sadržavati delokalizirane pi elektrone. Tubulini imaju i druga manja nepolarna područja koja sadrže pi elektronskim bogatim indolskim prstenovima odvojenim za oko 2 nm. Hameroff je predložio da su ti elektroni dovoljno blizu da se zaplete. Prvobitno je pretpostavio da bi elektroni tubulinske podjedinice formirali Bose-Einsteinov kondenzat, ali to je diskreditirano. Zatim je predložio Frohlichov kondenzat, hipotetičko koherentno osciliranje dipolarnih molekula, ali i to je eksperimentalno diskreditirano.

Orch-OR je dao brojna lažna biološka predviđanja i nije prihvaćeni model fiziologije mozga. Drugim riječima, nedostaje veza između fizike i neuronauke. Na primjer, predloženu prevlast mikrotubula ‘A’ rešetke, prikladnije za obradu informacija, falsificirali su Kikkawa i sur., koji su pokazali da sve in vivo mikrotubule imaju ‘B’ rešetku i šav. Također je falsificirano predloženo postojanje spoja između neurona i glija stanica. Orch-OR je predvidio da koherentnost mikrotubula doseže sinapse putem dendritičnih lamelarnih tijela (DLB), ali De Zeeuw et al. dokazali da je to nemoguće pokazujući da su DLB udaljeni mikrometri od spojeva praznina.

  1. godine Hameroff i Penrose tvrdili su da otkriće kvantnih vibracija u mikrotubulama Anirban Bandyopadhyay iz Nacionalnog instituta za nauku o materijalima u Japanu u martu 2013 potvrđuje teoriju Orch-OR.

Iako su ove teorije iznesene u naučnom okviru, teško ih je odvojiti od ličnih mišljenja naučnika. Mišljenja se često zasnivaju na intuiciji ili subjektivnim idejama o prirodi svesti. Na primjer, Penrose je napisao,

moje vlastito gledište tvrdi da ne možete simulirati ni svjesne aktivnosti. Ono što se događa u svjesnom razmišljanju je nešto što nikako ne biste mogli pravilno oponašati računarom …. Ako se nešto ponaša kao da je svjesno, da li kažete da je svjesno? Ljudi se oko toga beskrajno svađaju. Neki bi ljudi rekli, ‘Pa, morate zauzeti operativni stav; ne znamo šta je svest. Kako prosuđujete je li osoba pri svijesti ili nije? Samo načinom na koji se ponašaju. Isti kriterij primjenjujete na računalo ili robota kojim upravlja računalo. ‘ Drugi bi ljudi rekli, “Ne, ne možete reći da nešto osjeća samo zato što se ponaša kao da nešto osjeća.” Moj pogled se razlikuje od oba. Robot se ne bi ni ponašao uvjerljivo kao da je bio svjestan, osim ako uistinu jest – što ja kažem da ne bi mogao biti, ako je u potpunosti računski kontroliran.

Penrose nastavlja,

Mnogo onoga što mozak radi možete raditi na računaru. Ne kažem da se sva akcija mozga potpuno razlikuje od onoga što radite na računaru. Tvrdim da su akcije svijesti nešto drugačije. Ne kažem da je i svijest izvan fizike – iako kažem da je to izvan fizike koju sada poznajemo …. Moja tvrdnja je da u fizici mora postojati nešto što još ne razumijemo, što je vrlo važno, i koja je neračunarskog karaktera. To nije specifično za naš mozak; to je tamo, u fizičkom svijetu. Ali obično igra potpuno beznačajnu ulogu. Morao bi biti na mostu između kvantnog i klasičnog nivoa ponašanja – tj. Tamo gdje dolazi kvantno mjerenje.



W. Daniel Hillis odgovorio je: “Penrose je počinio klasičnu grešku stavljajući ljude u središte svemira. Njegov argument je u osnovi da ne može zamisliti kako um može biti tako kompliciran kao što je bez uvođenja magičnog eliksira iz nekog novog principa fizike, pa stoga to mora uključivati. To je neuspjeh Penroseove mašte …. Istina je da postoje neobjašnjive, neobjašnjive stvari, ali nema razloga vjerovati da je složeno ponašanje koje vidimo kod ljudi na bilo koji način povezan sa neuobičajenim, neobjašnjivim stvarima. “

Lawrence Krauss također otvoreno kritizira Penroseove ideje. Rekao je, “Roger Penrose dao je mnoštvo novodobne municije za crackpots sugerirajući da bi u nekim temeljnim razmjerima kvantna mehanika mogla biti relevantna za svijest. Kad čujete izraz” kvantna svijest “, trebali biste biti sumnjičavi …. Mnogi ljudi sumnjaju da su Penroseovi prijedlozi razumni, jer mozak nije izolirani kvantno-mehanički sistem. “

Umezawa, Vitiello, Freeman
Hiroomi Umezawa i saradnici predložili su kvantnu teoriju polja memorije. Giuseppe Vitiello i Walter Freeman predložili su dijaloški model uma. Ovaj dijalog odvija se između klasičnog i kvantnog dijela mozga. Njihovi modeli kvantne teorije polja moždane dinamike bitno se razlikuju od Penrose-Hameroff teorije.

Pribram, Bohm, Kak
Holonomska teorija mozga Karla Pribrama (kvantna holografija) pozvala se na kvantnu mehaniku da bi objasnila um obradi višeg reda. Tvrdio je da je njegov holonomski model riješio problem vezanja. Pribram je surađivao s Bohmom u njegovom radu na kvantnim pristupima umu i pružio je dokaze o tome koliko je obrada u mozgu urađena u cjelini. Predložio je da bi naručena voda na površinama dendritične membrane mogla djelovati strukturiranjem Bose-Einsteinove kondenzacije podržavajući kvantnu dinamiku.

Stapp
Henry Stapp je predložio da se kvantni talasi smanjuju samo u interakciji sa sviješću. On tvrdi iz ortodoksne kvantne mehanike Johna von Neumanna da se kvantno stanje urušava kada posmatrač odabere jednu od alternativnih kvantnih mogućnosti kao osnovu za buduće djelovanje. Kolaps se, dakle, događa u očekivanju da se posmatrač pridruži stanju. Stappov rad povukao je kritike naučnika poput Davida Bourgeta i Danka Georgieva. Georgiev kritizirao je Stappov model u dva aspekta:



Stapp-ov um nema vlastitu talasnu funkciju ili matricu gustine, ali unatoč tome može djelovati na mozak pomoću operatora projekcije. Takva upotreba nije kompatibilna sa standardnom kvantnom mehanikom, jer se na bilo koju tačku u prostoru može povezati bilo koji broj sablasnih umova koji deluju na fizičke kvantne sisteme sa bilo kojim operatorom projekcije. Stappov model stoga negira “prevladavajuće principe fizike”.
Stappova tvrdnja da je kvantni Zenoov efekt robustan protiv dekoherentnosti okoline direktno je u suprotnosti sa osnovnom teoremom u kvantnoj teoriji informacija: da delovanje sa operaterima projekcije na matricu gustine kvantnog sistema može samo povećati Von Neumannovu entropiju.
Stapp je odgovorio na oba prigovora Georgieva.

David Pearce
Britanski filozof David Pearce brani ono što naziva fizikalističkim idealizmom (“nematerijalistički fizikalist tvrdi da je stvarnost u osnovi iskustvena i da je prirodni svijet iscrpno opisan jednadžbama fizike i njihovim rješenjima”) i pretpostavio je da su jedinstveni svjesni umovi fizička stanja kvantne koherencije (neuronske superpozicije). Prema Pearceu, ova je pretpostavka podložna falsificiranju, za razliku od većine teorija svijesti, a Pearce je izložio eksperimentalni protokol koji opisuje kako bi se hipoteza mogla testirati pomoću interferometrije materija-val za otkrivanje neklasičnih obrazaca interferencije neuronskih superpozicija na početku toplotne dekoherencija. Pearce priznaje da su njegove ideje “vrlo špekulativne”, “kontintuitivne” i “nevjerovatne”.

Izvor: Wiki

Pronađeni su novi dokazi da je kvantni svijet još čudniji nego što smo mislili

Novi eksperimentalni dokaz sa Univerziteta Purdue izvijestio je o novim eksperimentalnim dokazima o kolektivnom ponašanju elektrona da bi stvorili “kvazičestice” nazvane “biloni”.

Anyon ima karakteristike koje se ne vide u drugim subatomskim česticama, uključujući pokazivanje frakcionog naboja i frakcionu statistiku koja održavaju “memoriju” njihove interakcije s drugim kvazičesticama izazivanjem kvantno-mehaničkih faznih promjena.

Postdoktorski istraživački saradnik James Nakamura, uz pomoć članova istraživačke grupe Shuang Liang i Geoffrey Gardner, otkrio je to radeći u laboratoriji profesora Michaela Manfre. Manfra je ugledni profesor fizike i astronomije, Purdueov Bill i Dee O’Brien, profesor fizike i astronomije, profesor elektrotehnike i računarskog inženjerstva i profesor inženjerstva materijala. Iako bi se ovo djelo na kraju moglo pokazati relevantnim za razvoj kvantnog računara, zasad, rekao je Manfra, to treba smatrati važnim korakom u razumijevanju fizike kvazičestica.

Istraživački rad o otkriću objavljen je u ovonedeljnom časopisu Nature Physics.

Nobelovac, teoretski fizičar Frank Wilczek, profesor fizike na MIT-u, dao je ovim kvazičesticama naziv “bilo koji” zbog njihovog neobičnog ponašanja, jer za razliku od drugih vrsta čestica, mogu usvojiti “bilo koju” kvantnu fazu kada njihova pozicije se razmjenjuju.

Prije sve većih dokaza o bilo kojem događaju 2020. godine, fizičari su kategorizirali čestice u poznatom svijetu u dvije grupe: fermioni i bozoni. Elektroni su primjer fermiona, a fotoni, koji čine svjetlost i radio valove, su bozoni. Jedna karakteristična razlika između fermiona i bozona je kako čestice djeluju kada su upletene ili upletene jedna oko druge. Fermioni odgovaraju na jedan neposredan način, a bozoni na drugi očekivani i neposredan način.

Svatko reagira kao da ima razlomljeni naboj, i što je još zanimljivije, stvara netrivijalnu promjenu faze dok se pletu jedni oko drugih. To svakome može dati vrstu “memorije” njihove interakcije.

“Anyon postoji samo kao kolektivno pobuđivanje elektrona pod posebnim okolnostima”, rekao je Manfra. “Ali oni imaju ta dokazljivo hladna svojstva, uključujući frakcijski naboj i frakcionu statistiku. Smiješno je, jer mislite:” Kako mogu imati manje naboja od elementarnog naboja elektrona? ” Ali imaju. “

Manfra je rekao da kada se razmijene bozoni ili fermioni, oni generiraju fazni faktor ili plus jedan, odnosno minus jedan.

“U slučaju našeg bilo koga, faza generirana pletenicama bila je 2π / 3,” rekao je. “To je drugačije od onoga što je ranije viđeno u prirodi.”

Anyons ovo ponašanje pokazuju samo kao kolektivnu gomilu elektrona, gdje se mnogi elektroni ponašaju kao jedan u vrlo ekstremnim i specifičnim uvjetima, pa se ne smatra da se mogu naći izolirani u prirodi, rekao je Nakamura.

“Uobičajeno u svijetu fizike razmišljamo o osnovnim česticama, poput protona i elektrona, i o svim stvarima koje čine periodni sistem”, rekao je. “Ali mi proučavamo postojanje kvazičestica koje izranjaju iz mora elektrona koji se nalaze u određenim ekstremnim uvjetima.”

Budući da ovo ponašanje ovisi o tome koliko puta se čestice pletu ili petljaju jedna oko druge, one su robusnije po svojim svojstvima od ostalih kvantnih čestica. Za ovu karakteristiku se kaže da je topološka jer ovisi o geometriji sistema i na kraju može dovesti do mnogo sofisticiranijih bilo kojih struktura koje bi se mogle koristiti za izgradnju stabilnih, topoloških kvantnih računara.

Tim je bio u stanju demonstrirati ovo ponašanje usmjeravanjem elektrona kroz specifičnu nagrušenu nanostrukturu nalik lavirintu sačinjenu od galijum arsenida i aluminijuma galijum arsenida. Ovaj uređaj, nazvan interferometar, ograničio je elektrone da se kreću u dvodimenzionalnoj putanji. Uređaj je ohlađen na stoti stepen od apsolutne nule (10 millikelvina) i izložen snažnom magnetnom polju od 9 Tesla. Električni otpor interferometra stvorio je smetnju koju su istraživači nazvali “parcelom pidžame”. Skokovi u obrascu smetnji bili su znak prisustva bilo koga.

“To je definitivno jedna od složenijih i složenijih stvari koje treba uraditi u eksperimentalnoj fizici”, rekao je Chetan Nayak, teorijski fizičar sa Kalifornijskog univerziteta u Santa Barbari za Science News.

Nakamura je rekao da su objekti u Purdueu stvorili okruženje za ovo otkriće.

“Imamo tehnologiju za uzgajanje poluprovodnika galijum arsenida koja je potrebna za realizaciju našeg elektronskog sistema. U nanotehnološkom centru Birck imamo uređaje za nanoizradu kako bismo napravili interferometar, uređaj koji smo koristili u eksperimentima. Na odjelu za fiziku imamo sposobnost mjerenja ultra niskih temperatura i stvaranja jakih magnetskih polja. ” on je rekao. “Dakle, imamo sve potrebne komponente koje su nam omogućile da ovo otkriće napravimo ovdje u Purdueu. To je sjajna stvar u istraživanju ovdje i zašto smo uspjeli napredovati.”

Manfra je rekao da će sljedeći korak na granici kvazičestica uključivati izgradnju složenijih interferometara.

“U novim interferometrima imat ćemo mogućnost upravljanja lokacijom i brojem kvazičestica u komori,” rekao je. “Tada ćemo moći promijeniti broj kvazičestica unutar interferometra na zahtjev i promijeniti obrazac smetnji kako mi odaberemo.”

Izvor: https://phys.org/news/2020-09-evidence-quantum-world-stranger-thought.html

Koliko bi biljaka trebalo da proizvede dovoljno kisika za jednu osobu?

Kratak odgovor je 700 sobnih biljaka. To je najniži minimum. Ali komplicirano je, pa evo i dugog odgovora …

Kisik čini oko 20% zraka oko nas, ali samo 15% zraka koji mi izdišemo. Svakim dahom trošimo četvrtinu dostupnog kisika.

Prosječan čovjek udiše oko 7–8 litara zraka u minuti. Kroz cijeli dan to je oko 10k – 11.5k litara zraka. Prosječna žena je manja od prosječnog muškarca, pa uzmimo manji broj od 10 000 litara.

Deset hiljada litara može zvučati mnogo. Ali to je zato što o litrama razmišljamo samo u kontekstu benzina ili bezalkoholnih pića.

U normalnim atmosferskim koncentracijama (oko 400 ppm, tj. 0,04%), CO2 nam neće stvarati probleme. Pa, nikako direktno.

Ugljični dioksid postaje toksičan u većim koncentracijama. Na 5% je smrtonosan.
Sjećate se koncentracije CO2 u zraku koji udišemo? Da, takođe 5%.

Sat vremena izlaganja 5% CO2 ubit će vas, tako da će to produbiti i produžena izloženost 4% CO2.

Čovjek udiše oko 420 litara zraka na sat, a taj zrak ima otprilike 20% kiseonika. Tako čovjek dobiva 84 litre kisika svakog sata. Naučnici su utvrdili da prosječan list (ako postoji takav) stvara oko 5 mililitara kisika u isto toliko vremena.

Kratka matematika daje nam 84 / 0,005 = 16,800 potrebnih listova. Vaša prosječna zrela kućna biljka može imati oko 25 listova, daje nam 672 biljke. Vjerovatno je najbolje zaokružiti do 700 kako bi bili sigurni.
Mi izdvajamo oko jednu molekulu dodatnog CO2 za svaku molekulu kisika koju konzumiramo, a biljke rade suprotno. To znači da bi ovih 700 biljaka trebalo spriječiti i trovanje ugljičnim dioksidom.
Dakle to je naš (pojednostavljeni) odgovor! Ako ste se ikada zaglavili u nepropusnoj sobi prosječne veličine, pogledajte okolo. Ako vidite manje od 700 sobnih biljaka, vjerovatno ćete biti mrtvi za nekoliko dana.

Također treba imati na umu da većina umjerenih biljaka proizvodi kisik samo tokom dana. Prelaze na apsorbiranje kisika i oslobađanje ugljičnog dioksida noću.

Osamdesetih i devedesetih godina grupa naučnika i bogat biznismen izgradili su najveći zatvoreni sistem u istoriji. Biosfera 2 bila je dvije godine grupi istraživača / ispitanika kako bi vidjeli mogu li preživjeti u nepropusnoj strukturi.
Rukovodioci projekata na kraju su morali natočiti dodatni kisik.
Zašto? Ugljični dioksid nastao disanjem tla reagirao je betonskim zidovima, stvarajući kalcijev karbonat i vodu. To je značilo da CO2 nikada nije dospio u biljke i nikada se nije pretvorio u kisik.
Nakon 16 mjeseci, ova je neočekivana reakcija bila dovoljna da potroši kisik do opasnih nivoa.

Bilo koji oksidirajući materijal poput gvožđa također bi s vremenom trošio dragocjeni kisik.

Izvor: Medium

Schrödingerova mačka

Schrödingerova mačka je misaoni eksperiment, ponekad opisan kao paradoks, koji je osmislio austrijski fizičar Erwin Schrödinger 1935. godine, iako je ideja potekla od Alberta Einsteina. To ilustrira ono što je vidio kao problem kopenhagenske interpretacije kvantne mehanike primijenjene na svakodnevne predmete. Scenarij predstavlja hipotetičku mačku koja može biti istovremeno i živa i mrtva, stanje poznato kao kvantna superpozicija, kao rezultat povezanosti na slučajni subatomski događaj koji se može dogoditi ili ne dogoditi.

Misaoni eksperiment je često predstavljen u teorijskim raspravama o interpretacijama kvantne mehanike, posebno u situacijama koje uključuju problem sa mjerenjem. Schrödinger je skovao termin Verschränkung (zapletenost) tokom razvijanja misaonog eksperimenta.

Schrödinger je svoj misaoni eksperiment zamislio kao diskusiju o članku EPR-a – nazvanom po svojim autorima Einstein, Podolsky i Rosen – 1935. godine. EPR članak naglasio je kontraintuitivnu prirodu kvantnih superpozicija, u kojima kvantni sistem poput atoma ili fotona može postojati kao kombinacija više stanja koja odgovaraju različitim mogućim ishodima.

Prevladavajuća teorija, nazvana interpretacijom iz Kopenhagena, kaže da kvantni sistem ostaje u superpoziciji sve dok ne djeluje na vanjski svijet ili ga ne promatra vanjski svijet. Kad se to dogodi, superpozicija se urušava u jedno ili drugo od mogućih definitivnih stanja. EPR eksperiment pokazuje da sistem s više čestica odvojenih velikim udaljenostima može biti u takvoj superpoziciji. Schrödinger i Einstein razmijenili su pisma o Einsteinovom članku o EPR-u, tokom kojeg je Einstein istaknuo da će stanje nestabilne bule baruta nakon nekog vremena sadržavati superpoziciju i eksplodiranih i neeksplodiranih stanja.

Da bi dodatno ilustrirao, Schrödinger je opisao kako se, u načelu, može stvoriti superpozicija u sistemu velikih razmjera, čineći ga ovisnim o kvantnoj čestici koja je bila u superpoziciji. Predložio je scenarij s mačkom u zaključanoj čeličnoj komori, pri čemu život ili smrt mačke ovisi o stanju radioaktivnog atoma, bilo da se raspada i emitira zračenje ili ne. Prema Schrödingeru, kopenhagenska interpretacija podrazumijeva da mačka ostaje i živa i mrtva dok ju neko ne promatra. Schrödinger nije želio promovirati ideju mrtvih i živih mačaka kao ozbiljnu mogućnost; naprotiv, namijenio je primjer da ilustrira apsurdnost postojećeg pogleda kvantne mehanike.

Međutim, od Schrödingerovog vremena fizičari su razvili i druge interpretacije matematike kvantne mehanike, od kojih neke smatraju mačkinu superpoziciju “živog i mrtvog stanja” sasvim stvarnom. Bez obzira da li se kutija, uređaj i mačka zapravo smatraju makroskopskim fizičkim objektima, razlikuje se u svrhi u kojoj se mislilo eksperiment koristi. Kada se koristi kao ilustrativni element u drugim misaonim eksperimentima, obično se smatra čisto metaforičnim sistemom da se izbjegne pitanje može li superpozicija trajati značajno u tako velikom obimu bez dekoherencije. Zamišljen kao kritika kopenhagenske interpretacije (prevladavajuća ortodoksija 1935.), Schrödingerov mačji eksperiment i dalje ostaje kamen temeljac za moderne interpretacije kvantne mehanike. Fizičari često koriste način na koji se svako tumačenje odnosi na Schrödingerovu mačku kao način ilustracije i uspoređivanja određenih osobina, snaga i slabosti svakog tumačenja.

Schrödinger je napisao / la:

Čak se mogu postaviti prilično smješni slučajevi. Mačka je stavljena u čeličnu komoru, zajedno sa sljedećim uređajem (koji mora biti zaštićen od direktne smetnje mačke): na Gegerovom brojaču nalazi se sitno malo radioaktivne tvari, tako malo, da je možda u toku sata kada se jedan od atoma raspada, ali isto tako, s jednakom verovatnoćom, možda i nijedan; ako se dogodi, brojač cijevi isprazni i putem releja pusti čekić koji razbija malu tikvicu cijanovodične kiseline. Ako je jedan cijeli sistem ostavio sebi sat vremena, rekli bi da mačka još živi ako se u međuvremenu ni nijedan atom ne raspadne. Prvo atomsko raspadanje otrovalo bi ga. Psi-funkcija čitavog sistema bi se izrazila time što bi živa i mrtva mačka bile pomiješane ili razmazane u jednakim dijelovima.

Tipično je za ove slučajeve da se neodređenost izvorno ograničena na atomsku domenu pretvara u makroskopsku neodređenost, koja se potom može riješiti izravnim promatranjem. To nas sprječava da naivno prihvatimo kao validan „zamagljeni model“ za predstavljanje stvarnosti. Sam po sebi, on ne bi utjelovio ništa nejasno ili kontradiktorno. Postoji razlika između drhtave fotografije i snimke oblaka i magle.

Schrödingerov čuveni misaoni eksperiment postavlja pitanje, “kada kvantni sistem prestaje postojati kao superpozicija stanja i kad postaje jedno ili drugo?” (Tehnički gledano, kada stvarno kvantno stanje prestaje biti netrivijalna linearna kombinacija stanja, od kojih svako nalikuje različitim klasičnim stanjima, i umjesto toga počinje imati jedinstveni klasični opis?). Ako mačka preživi, sjeća se samo žive . Ali objašnjenja EPR eksperimenata koja su u skladu sa standardnom mikroskopskom kvantnom mehanikom zahtijevaju da makroskopski predmeti, poput mačaka i bilježnica, nemaju uvijek jedinstvene klasične opise. Misaoni eksperiment ilustrira ovaj prividni paradoks. Naša intuicija kaže da nijedan promatrač ne može biti u mješavini stanja – ali mačka, čini se iz misaonog eksperimenta, može biti takva smjesa. Da li je mački potrebno da bude promatrač ili da li njeno postojanje u jednom dobro definiranom klasičnom stanju zahtijeva drugog vanjskog promatrača? Svaka alternativa djelovala je apsurdno Einsteinu, koji je bio impresioniran sposobnošću misaonog eksperimenta da istakne ta pitanja. U pismu Schrödingeru iz 1950. godine napisao je:

Vi ste jedini savremeni fizičar, pored Laue, koji vidi da se ne može zaobići pretpostavka stvarnosti, ako je samo jedan iskren. Većina njih jednostavno ne vidi kakvu rizičnu igru igraju sa stvarnošću – stvarnost kao nešto što je nezavisno od eksperimentalno utvrđenog. Njihovu interpretaciju, međutim, najelegantnije opovrgava vaš sistem radioaktivnog atoma + pojačalo + naboj pištolja u prahu + mačka u kutiji, u kojoj psi-funkcija sustava sadrži i mačku živu i raznesenu na komade. Nitko zaista ne sumnja da je prisustvo ili odsustvo mačke nešto nezavisno od čina opažanja.

Napominjemo da se naboj baruta ne spominje u Schrödingerovoj instalaciji, koja koristi Geigerov brojač kao pojačalo, a ugljikovodični otrov umjesto baruta. Barut je spomenut u Einsteinovoj originalnoj sugestiji Schrödinger-u, a Einstein ga je prenosio naprijed u ovu raspravu.

Interpretacije eksperimenta


Od Schrödingerovog vremena predložene su druge interpretacije kvantne mehanike koje daju različite odgovore na pitanja koja postavlja Schrödingerova mačka o tome koliko dugo traju superpozicije i kada (ili da li) propadaju.

Kopenhagenska interpretacija



Ova interpretacija kvantne mehanike je interpretacija iz Kopenhagena. U interpretaciji iz Kopenhagena, sistem prestaje biti superpozicija stanja i postaje jedno ili drugo kada se dogodi promatranje. Ovaj misaoni eksperiment otkriva činjenicu da priroda mjerenja ili promatranja nije dobro definirana u ovoj interpretaciji. Eksperiment se može protumačiti tako da sustav dok je zatvoren okvir istovremeno postoji u superpoziciji stanja “raspadnutog jezgra / mrtva mačka” i “neoplođeno jezgro / živa mačka”, i to samo kad se kutija otvori i promatranjem valna funkcijan se sruši u jedno od dva stanja.

Međutim, jedan od glavnih naučnika povezanih s interpretacijom iz Kopenhagena, Niels Bohr, nikada nije imao na umu propadanje valne funkcije uzrokovano promatračem, jer on valnu funkciju nije smatrao fizički stvarnom, već statističkim alatom; prema tome, Schrödingerova mačka nije mu predstavljala nikakvu zagonetku. Mačka bi bila mrtva ili živa mnogo prije nego što je svjesni promatrač otvorio kutiju. Analizom stvarnog eksperimenta utvrđeno je da je samo mjerenje (na primjer pomoću Geigerovog brojača) dovoljno za kolaps kvantne valne funkcije prije bilo kakvog svjesnog promatranja mjerenja, iako je valjanost njihovog dizajna osporavana. (Stav da se „opažanje“ zauzima kada čestica iz jezgre udari u detektor može se razviti u objektivne teorije kolapsa. Miselni eksperiment zahtijeva detektiranje „nesvjesnog promatranja“ kako bi se dogodio kolaps valnog oblika. Nasuprot tome, pristup mnogih svjetova negira da se kolaps ikad događa.)

Tumačenje mnogih svjetova i dosljedne historije

Hugh Everett je 1957. formulisao interpretaciju kvantne mehanike u mnogim svjetovima, koja ne izdvaja promatranje kao poseban proces. U tumačenju mnogih svjetova, i živa i mrtva stanja mačke ostaju nakon otvaranja kutije, ali su međusobno ukrašena. Drugim riječima, kad se otvori kutija, posmatrač i eventualno mrtva mačka razdvajaju se u promatrača koji gleda u kutiju sa mrtvom mačkom, a promatrač koji gleda kutiju sa živom mačkom. Ali budući da su mrtva i živa stanja dekoncentrirana, nema učinkovite komunikacije ili interakcije između njih.

Prilikom otvaranja okvira promatrač se zapetljava u mačku, pa se formiraju „posmatračka stanja“ koja odgovaraju mački da je živa i mrtva; svako promatračko stanje je zapleteno ili povezano s mačkom tako da “promatranje stanja mačke” i “stanje mačke” korespondiraju jedno s drugim. Kvantna dekoherencija osigurava da različiti ishodi nemaju međusobnu interakciju. Isti mehanizam kvantne dekoherencije važan je i za interpretaciju u smislu konzistentne istorije. Samo „mrtva mačka“ ili „živa mačka“ mogu biti dio dosljedne historije u ovom tumačenju. Smatra se da dekoherencija sprječava istovremeno opažanje više stanja.

Varijantu Schrödingerovog eksperimenta, poznatu kao mašina za kvantno samoubistvo, predložio je kosmolog Max Tegmark. Ona ispituje Schrödingerov eksperiment s mačkama s gledišta mačke i tvrdi da se pomoću ovog pristupa može razlikovati kopenhaška interpretacija i ona mnogih svijetova.

Ansambl interpretacija


Interpretacija ansambla kaže da supozicije nisu ništa drugo nego podsemenici veće statističke cjeline. Vektor stanja ne bi se primjenjivao na pojedinačne eksperimente na mačkama, već samo na statistiku mnogih sličnih pripremljenih pokusa na mačkama. Zagovornici ove interpretacije tvrde da to paradoks Schrödingerove mačke čini trivijalnom materijom, ili ne-pitanjem.

Ovo tumačenje služi za odbacivanje ideje da jedan fizički sistem u kvantnoj mehanici ima matematički opis koji mu na bilo koji način odgovara.

Relacijsko tumačenje


Relacijsko tumačenje ne čini fundamentalnu razliku između ljudskog eksperimentatora, mačke ili uređaja ili između animiranih i neživih sistema; svi su kvantni sistemi kojima vladaju ista pravila evolucije talasnih funkcija i svi se mogu smatrati “promatračima”. Ali relacijsko tumačenje omogućava da različiti promatrači mogu dati različite izvještaje o istom nizu događaja, ovisno o informacijama koje imaju o sustavu. Mačka se može smatrati posmatračem aparata; u međuvremenu, eksperiment se može smatrati drugim posmatračem sistema u okviru (mačka plus uređaj). Prije nego što se kutija otvori, mačka, po prirodi da je živa ili mrtva, ima informacije o stanju aparata (atom je propadao ili nije propadao); ali eksperimentator nema informacije o stanju sadržaja kutije. Na ovaj način, dva promatrača istovremeno imaju različite izvještaje o situaciji: Mački se činilo da „talasa“ talasna funkcija aparata; eksperimentatoru, čini se da je sadržaj kutije u superpoziciji. Sve dok se okvir ne otvori, a oba promatrača imaju iste informacije o onome što se dogodilo, čini se da se oba stanja sustava “urušavaju” u isti definitivni rezultat, mačka koja je ili živa ili mrtva.

Transakcijsko tumačenje


U transakcijskoj interpretaciji aparat emitira napredni val unatrag u vremenu, koji u kombinaciji s valom koji izvor emitira naprijed u vremenu formira stojeći val. Valovi se vide kao fizički stvarni, a aparat se smatra “posmatračem”. U transakcijskoj interpretaciji kolaps valne funkcije je “atemporal” i događa se duž cijele transakcije između izvora i aparata. Mačka nikad nije u superpoziciji. Umjesto toga, mačka je samo u jednom stanju u bilo kojem trenutku, bez obzira na to kad ljudski eksperimentator gleda u kutiju. Transakcijska interpretacija rješava ovaj kvantni paradoks.

Zeno efekti


Zeno efekt zna da uzrokuje kašnjenja u bilo kakvim promjenama od početnog stanja.

S druge strane, anti-zeno efekat ubrzava promjene. Na primjer, ako često zavirite u mačji okvir, možete uzrokovati odgađanja sudbonosnog izbora ili, obrnuto, ubrzati ga. I Zeno efekat i anti-Zeno efekat su stvarni i za koje se zna da se dešavaju sa stvarnim atomima. Kvantni sistem koji se mjeri mora biti snažno povezan s okolnim okruženjem (u ovom slučaju s aparatom, eksperimentalnom prostorom … itd.) Kako bi se dobili tačniji podaci. No, iako nema informacija koje su prenesene u vanjski svijet, smatra se kvazi-mjerenjem, ali čim se informacije o dobrobiti mačke prenose u vanjski svijet (zavirivanjem u okvir) kvazi- merenje se pretvara u mjerenje. Kvazi-merenja, poput merenja, uzrokuju efekte Zenova. Zeno efekti nas uče da bi čak i bez zavirivanja u kutiju mačkina smrt bila odgođena ili ubrzana zbog svog okruženja.

Objektivne teorije kolapsa


Prema objektivnim teorijama kolapsa, superpozicije se uništavaju spontano (bez obzira na vanjsko promatranje), kad se dostigne neki objektivni fizički prag (vremena, mase, temperature, nepovratnosti itd.). Tako bi se očekivalo da bi se mačka doselila u određeno stanje puno prije otvaranja kutije. To bi se moglo lagano izraziti kao “mačka promatra sebe” ili “okolina promatra mačku”.

Objektivne teorije kolapsa zahtijevaju modifikaciju standardne kvantne mehanike kako bi se omogućilo uništavanje superpozicija procesom evolucije vremena.

Prijave i testovi



Schrödingerova mačja kvantna superpozicija stanja i utjecaja okoline kroz dekoherenciju
Opisani eksperiment je čisto teorijski i nije poznato da je predloženi stroj konstruiran. Međutim, uspješni eksperimenti koji uključuju slične principe, npr. izvršena su superpozicije relativno velikih (po standardima kvantne fizike) objekata. Ovi eksperimenti ne pokazuju da se objekt veličine mačke može nanositi, ali već ih je gornja granica “stanja mačaka” pomaknula prema gore. U mnogim slučajevima stanje je kratkotrajno, čak i kada se ohladi na gotovo apsolutnu nulu.


Eksperiment koji uključuje superprevodni uređaj za kvantnu interferenciju (“SQUID”) povezan je s temom misaonog eksperimenta: “Stanje superpozicije ne odgovara milijardi elektrona koji teku jednim smjerom i milijardi drugih koji teče drugim putem. Superprevodni elektroni se kreću masovno. Svi supravodljivi elektroni u SQUID struji oba puta oko petlje odjednom kada su u Schrödingerovom mačjem stanju.
Izgrađen je piezoelektrični “tuning vilica”, koji se može staviti u superpoziciju vibrirajućeg i ne vibrirajućeg stanja. Rezonator sadrži oko 10 biliona atoma.
Predložen je eksperiment koji uključuje virus gripa.
Predložen je eksperiment koji uključuje bakteriju i elektromehanički oscilator.
U kvantnom računanju izraz “mačje stanje” ponekad se odnosi na stanje GHZ, pri čemu je nekoliko kubita u jednakom superpoziciji od svih 0 i svi su 1; npr.


Prema barem jednom prijedlogu, moguće je utvrditi stanje mačke prije nego što je promatrate.

Proširenja


Wignerov prijatelj varijanta eksperimenta sa dva ljudska promatrača: prvi vrši promatranje vidi li bljesak svjetlosti, a zatim svoje promatranje prosljeđuje drugom promatraču. Ovdje je pitanje: da li se valna funkcija “kolabira” kada prvi promatrač pogleda eksperiment, ili tek kad drugi promatrač bude obaviješten o opažanjima prvog promatrača?

U drugom su dodatku ugledni fizičari otišli toliko daleko da su sugerisali da su astronomi koji su 1998. promatrali tamnu energiju u svemiru možda “smanjili životni vijek” kroz pseudo-Schrödinger-ov scenarij za mačke, iako je to kontroverzno stajalište.

Naučnici su otkrili porijeklo građevnih blokova života?

Istraživači Rutgera otkrili su porijeklo proteinskih struktura odgovornih za metabolizam: jednostavnih molekula koje pokreću rani život na Zemlji i služe kao hemijski signali koje bi NASA mogla upotrijebiti u potrazi za životom na drugim planetima.

Njihova studija koja predviđa kako su se najraniji proteini izgledali prije 3,5 do 2,5 milijardi godina objavljena je u časopisu Proceedings of the National Academy of Sciences.

Naučnici su poput hiljada komadnih zagonetki povukli evoluciju enzima (proteina) iz sadašnjosti u duboku prošlost. Rješenje slagalice tražilo je dva komada koja nedostaju i život na Zemlji ne bi mogao postojati bez njih. Izgradnjom mreže povezane s njihovim ulogama u metabolizmu, ovaj tim otkrio je dijelove koji nedostaju.

“Mi vrlo malo znamo o tome kako je započeo život na našoj planeti. Ovaj rad omogućio nam je da pogledamo duboko u vrijeme i predložimo najranije metaboličke proteine”, rekao je koautor Vikas Nanda, profesor biohemije i molekularne biologije na Rutgersu Robert Wood Johnson Medical Škola i rezidencijalni član Centra za naprednu biotehnologiju i medicinu. “Naša će se predviđanja testirati u laboratoriji kako bismo bolje razumjeli porijeklo života na Zemlji i obavijestili kako život može nastati negde drugde. U laboratoriju gradimo modele proteina i testiramo mogu li oni pokrenuti reakcije kritične za rani metabolizam. “

Tim naučnika pod vodstvom Rutgersa pod nazivom ENIGMA (evolucija nanomachines in Geospheres and Microbial Ancestors) sprovodi istraživanje uz NASA grant i putem članstva u NASA Astrobiology programu. Projekt ENIGMA želi otkriti ulogu najjednostavnijih proteina koji su katalizirali najranije faze života.

“Mislimo da je život izgrađen iz vrlo malih građevnih blokova i nastao je kao Lego set da bi napravio stanice i složenije organizme poput nas”, rekao je stariji autor Paul G. Falkowski, glavni istraživač ENIGMA-e i ugledni profesor sa Univerziteta Rutgers-New Brunswick koji vodi laboratoriju za biofiziku i molekularnu ekologiju u okolišu. “Mislimo da smo našli građevne blokove života – Lego set koji je, u konačnici, doveo do evolucije ćelija, životinja i biljaka.”

Rutgersov tim usredotočio se na dva proteina “nabora” koji su vjerovatno prve strukture u ranom metabolizmu. Oni su feredoksinski nabor koji veže željezo-sumporne spojeve, i “Rossmannov” nabor, koji veže nukleotide (gradivne blokove DNK i RNA). Ovo su dva dijela slagalice koja se moraju uklopiti u evoluciju života.

Proteini su lanci aminokiselina i lančani 3-D put u svemiru naziva se nabor. Ferredoksini su metali koji se nalaze u savremenim proteinima i okretnim elektronima oko ćelija kako bi se pospješio metabolizam.

Elektroni teku kroz čvrste, tečne i plinove i energetske životne sustave, a ista električna sila mora biti prisutna u bilo kojem drugom planetarnom sustavu sa šansama da podrži život.

Postoje dokazi da su dva puta možda dijelila zajedničkog pretka i, ako je istina, predak je možda bio prvi metabolički enzim u životu.

Izvor: Phys.org

Dvije suprotne verzije stvarnosti mogu istovremeno postojati, pokazuje kvantni eksperiment

Dvije verzije stvarnosti mogu postojati istodobno, barem u kvantnom svijetu, prema novom istraživanju.

Naučnici su sproveli testove kako bi pokazali teorijsko pitanje fizike prvo postavljeno kao puki misaoni eksperiment prije par desetljeća.

U okviru koncepta, dva imaginarna znanstvenika smatraju se ispravnima, iako su došli do potpuno različitih zaključaka.

Demonstracija toga u praksi stoga dovodi u pitanje osnovna pitanja o fizici i sugerira da ne postoji takva stvar kao objektivna stvarnost.


Rezultati su objavljeni na arXiv, mjestu za istraživanje koje tek treba proći cjelovitu recenziju, britanski tim sa sjedištem na Univerzitetu Heriot-Watt.

Oni su krenuli da istražuju “Wignerov prijatelj”, nazvan po nobelovom nagrađivanom fizičaru Eugeniju Wigneru koji je došao 1961. godine, a koji je zasnovan na ideji da foton, odnosno čestica svetlosti, može postojati u dva moguća stanja.

Prema zakonima kvantne mehanike, ova „superpozicija“ znači polarizacija fotona – ili os na kojoj se vrti – istovremeno je i vertikalna i horizontalna.

Međutim, jednom kada jedan znanstvenik u izoliranoj laboratoriji izmjeri foton, otkriva da je polarizacija fotona fiksirana bilo vertikalno ili vodoravno.


Istovremeno, za nekoga ko je izvan laboratorije i nije svjestan rezultata, neizmjereni foton i dalje je u stanju superpozicije.

Uprkos ovim naizgled suprotstavljenim stvarnostima, obje su tačne.

U svojoj novoj studiji, fizičari su mogli eksperiment izvesti u stvarnost, koristeći stvarne fotone i mjernu opremu koja je stajala za Wignera i njegovog “prijatelja”.

Svojim rezultatima bili su u stanju potvrditi da su dvije stvarnosti koje je Wigner opisao istinite.

“Oboje možete potvrditi”, rekao je koautor studije dr Martin Ringbauer za Live Science, objašnjavajući kako ovaj zbunjujući koncept može napraviti skok sa teorije na stvarnost.

Teoretski napredak bio je potreban za formulisanje problema na način koji je eksperimentalno provjerljiv“, rekao je.

„Tada je eksperimentalnoj strani bilo potrebno razvoj događaja u kontroli kvantnih sistema da bi implementirao nešto takvo.“

Iako se eksperiment i njegovi rezultati mogu činiti svijetom – ili čak univerzumom udaljeni – od svakodnevnog života, on postavlja fizičarima duboka i uznemirujuća pitanja o prirodi stvarnosti.

„Naučna metoda se oslanja na činjenice, utvrđene ponovljenim mjerenjima i dogovorene univerzalno, nezavisno od toga ko ih je posmatrao“, napisao je tim u svom radu.

Uloga kvantne mehanike je opisati svijet u tako malom obimu da se konvencionalna pravila fizike ne primjenjuju. Ako se mjerenja iz ovog polja ne mogu smatrati apsolutnim, to bi moglo promijeniti način na koji disciplina funkcionira.


“Čini se da se, za razliku od klasične fizike, rezultati mjerenja ne mogu smatrati apsolutnom istinom, već ih se mora shvatiti u odnosu na posmatrača koji je izvršio mjerenje”, rekao je dr. Ringbauer.

“Priče koje pričamo o kvantnoj mehanici moraju se tome prilagoditi.”

Izvor: Independent