Category Archives: Atomska fizika

Otkrivena je nova vrsta materije koja postoji u 4 dimenzije!

Ovo je ludo. Naučnici su stvorili potpuno novu vrstu materije. Došli su nam vremenski kristali. Ovi vremenski kristali imaju osobine koje se nisu nikad dosad vidjele u normalnim tipovima materije.

Normalno je materija nepokretna, kreće se samo ako ju neko pokrene. Npr. lopta u mirovanju je puna potencijalne energije ali kad ju se primjeri njena potencijalna energija se pretvara u kinetetičku.

Vremenski kristali se kreću u stanju mirovanja. Oni su kao lopta koja je zauvijek u kretanju. Oni si uvijek nestabilni sve do nivoa atoma. Oni si prva materija koja nije u ekvilibrijumu ikad stvorena! Normalna materija se sastoji od kristalnih rešetki u 3D prostoru sa oblicima koji se ponavljaju u prostoru, međutim u vremenskim kristalima oblici se ne ponavljaju samo u prostoru već i u vremenu. Oni su u osnovi 4D kristali.
Koncept vremenskih kristala je prvo predložen od strane dobitnika Nobelove nagrade Franka Wilczeka. On je dao hipotezu da bi mogla postojati materija koja bi se mogla kretati i u osnovnom stanju. Vremenski kristali bi se mogli kretati bez da im se dodaje energija jer bi bili napravljeni da budu nestabilni tako lomeći simetriju vremena i bili bi sačinjeni od atoma koji bi se neprestano kretali.

Jednom kad se ova hipoteza pojavila istraživači su se fokusirali na stvaranje materije koja bi mogla slomiti vremensku simetriju. U augustu 2016 godine objavljen je članak koji je bio nazvan: “Most između teorijske ideje i eksperimentalne implementacije.” Dva tima s Univerziteta u Marylandu i Harvard – a su se bacila na posao spravljanja vremenskih kristala. Oba tima su bila uspješna, ali su koristili različite metode.
Prvi su pomoću lasera i magneta potakli atome na oscilovanje i primjetili da jednom potaknuti na kretanje i oscilovanje ti atomi se kreću i brže nego što ih se prvi put potaklo. Tako je stvorena nova vrsta materije koja se nastavila kretati čak i u osnovnom stanju.
Istraživači sa Harwarda su njihove vremenske kristale napravili drugačije. Koristili su druge vrste atoma i umjesto lasera upotrijebili su mikrovalove da bi ih okretali i potakli na oscilovanje.

Ova nova vrsta materije bi mogla dovesti do napredka u razvoju kvantnih računala.
Otkriće vremenskih kristala je dokaz da se vremenska simetrije može slomiti i da postoji materija koja nije u ekvilibrijumu.

Izvor:

Šta je to spin?

Spin

Spin je osnovna osobina elementarne čestice, poput mase i naelektrisanja. Pošto je kvantno-mehaničke prirode ne može se opisati makroskopski. Najpribližnije se može shvatiti kao mehanički moment, tj, kao da se čestica ponaša kao mala čigra.

Spin ima dimenzije dejstva, a izražava se kao umnožak Plankove konstante i spinskog kvantnog broja.

Pored elementarnih čestica spin mogu posedovati i njihove kombinacije, recimo, atomska jezgra pa se onda govori o nuklearnom spinu. Nuklearni spin je kombinacija spinova protona i neutrona od kojih je jezgro načinjeno.

Isto tako, orbite elektrona u atomima i molekulima mogu imati spin.

Čestice sa celobrojnim spinskim kvantnim brojem su bozoni, a sa polucelim fermioni.

U okviru kvantne mehanike čestice posjeduju vlastiti (intrinsični) kutni impuls. Ovaj kutni impuls je kvantiziran, tj. može poprimiti samo strogo određene vrijednost i naziva se spin. Zbog svojih osobitih svojstava, spin se nikako ne može jednostavno objasniti kružnim gibanjem tj. rotacijom čestice u okvirima klasične mehanike. Pokazuje se prikladnim prilikom prikaza spina u u okviru kvantne mehanike uvesti bezdimenzionalnu veličinu “spinskog kvatnog broja” s, koja može poprimiti vrijednost cijelih (s = 0, 1, 2…) ili polu-cijelih (s = 1/2, 3/2…) brojeva. Čestice sa cjelobrojnim spinskim brojem su bozoni, a oni sa polucijelim su fermioni. Iznos kutnog impulsa može poprimiti samo vrijednosti zadane 

Gdje je reducirana Planckova konstanta.

Osim kvantizacije iznosa spina, kvantiziran je i iznos projekcije spina sz na neku proizvoljno odabranu z os, koja može poprimiti samo vrijednosti:

Zbrajanje spina i orbitalnog kutnog impulsa u okviru kvantne mehanike također se vrši na specifičan način.

Čestice koje posjeduju spin, mogu posjedovati intrinsični magnetni moment μ, tako da za česticu naboja q, mase m, i spina s vrijedi:

Ovdje je g veličina zvana žiromagnetski omjer ili Landeov g faktor, koji za elektron iznosi oko 2,0023. Intrinsični magnetni moment čestice nemože se objasniti u okviru klasične fizike i klasične elektrodinamike, npr. kao jednostavna rotacija nabijene čestice naboja e sa kutnim impulsom iznosa L. Za povezivanje veličina s i μ potrebno je tumačenje u okviru kvantne elektrodinamike.

Pod pojmom spin često se osim kutnog impulsa podrazumjeva zapravo sam spinski kvantni broj s, ili čak intrinsični magnetni moment čestice.

U Engleskom jeziku riječ “spin” ima više značenja, od kojih mnoga nemaju nikakve veze sa fizikom. U okviru fizike, literatura na Engleskom pojam “spin” koristi kao naziv za vlastiti (intrinsični) kutni impuls, odnosno kutni impuls povezan sa rotacijom tijela oko njegovog vlastitog centra mase, bilo u okviru klasične ili kvante fizike. U Hrvatskom jeziku pojam spin fizika koristi isključivo u okviru kvantne mehanike.

Izvor: Wikipedia

Šta je to spin?

Spin

Spin je osnovna osobina elementarne čestice, poput mase i naelektrisanja. Pošto je kvantno-mehaničke prirode ne može se opisati makroskopski. Najpribližnije se može shvatiti kao mehanički moment, tj, kao da se čestica ponaša kao mala čigra.

Spin ima dimenzije dejstva, a izražava se kao umnožak Plankove konstante i spinskog kvantnog broja.

Pored elementarnih čestica spin mogu posedovati i njihove kombinacije, recimo, atomska jezgra pa se onda govori o nuklearnom spinu. Nuklearni spin je kombinacija spinova protona i neutrona od kojih je jezgro načinjeno.

Isto tako, orbite elektrona u atomima i molekulima mogu imati spin.

Čestice sa celobrojnim spinskim kvantnim brojem su bozoni, a sa polucelim fermioni.

U okviru kvantne mehanike čestice posjeduju vlastiti (intrinsični) kutni impuls. Ovaj kutni impuls je kvantiziran, tj. može poprimiti samo strogo određene vrijednost i naziva se spin. Zbog svojih osobitih svojstava, spin se nikako ne može jednostavno objasniti kružnim gibanjem tj. rotacijom čestice u okvirima klasične mehanike. Pokazuje se prikladnim prilikom prikaza spina u u okviru kvantne mehanike uvesti bezdimenzionalnu veličinu “spinskog kvatnog broja” s, koja može poprimiti vrijednost cijelih (s = 0, 1, 2…) ili polu-cijelih (s = 1/2, 3/2…) brojeva. Čestice sa cjelobrojnim spinskim brojem su bozoni, a oni sa polucijelim su fermioni. Iznos kutnog impulsa može poprimiti samo vrijednosti zadane 

Gdje je reducirana Planckova konstanta.

Osim kvantizacije iznosa spina, kvantiziran je i iznos projekcije spina sz na neku proizvoljno odabranu z os, koja može poprimiti samo vrijednosti:

Zbrajanje spina i orbitalnog kutnog impulsa u okviru kvantne mehanike također se vrši na specifičan način.

Čestice koje posjeduju spin, mogu posjedovati intrinsični magnetni moment μ, tako da za česticu naboja q, mase m, i spina s vrijedi:

Ovdje je g veličina zvana žiromagnetski omjer ili Landeov g faktor, koji za elektron iznosi oko 2,0023. Intrinsični magnetni moment čestice nemože se objasniti u okviru klasične fizike i klasične elektrodinamike, npr. kao jednostavna rotacija nabijene čestice naboja e sa kutnim impulsom iznosa L. Za povezivanje veličina s i μ potrebno je tumačenje u okviru kvantne elektrodinamike.

Pod pojmom spin često se osim kutnog impulsa podrazumjeva zapravo sam spinski kvantni broj s, ili čak intrinsični magnetni moment čestice.

U Engleskom jeziku riječ “spin” ima više značenja, od kojih mnoga nemaju nikakve veze sa fizikom. U okviru fizike, literatura na Engleskom pojam “spin” koristi kao naziv za vlastiti (intrinsični) kutni impuls, odnosno kutni impuls povezan sa rotacijom tijela oko njegovog vlastitog centra mase, bilo u okviru klasične ili kvante fizike. U Hrvatskom jeziku pojam spin fizika koristi isključivo u okviru kvantne mehanike.

Izvor: Wikipedia

Kako su fizičari otkrili koliko koji atom ima elektrona, protona i neutrona?

S obzirom da znamo da svaki atom da bi bio stabilan mora biti električki neutralan (kako to znamo ti je drugo pitanje), broj elektrona mora biti jednak broju protona.

Dakle, pitanje je stvarno kako znamo koliko protona i koliko elektrona koji atom ima. To je zapravo vrlo zanimljivo pitanje koje datira iz ranih dana (pa čak i ranije) nuklearne fizike i kemije.

Danas se to može učiniti prilično lako sa ionskim (ioni su naelektrisane čestice) akceleratorom (ubrzivaćem čestica) i magnetom(magnetom jer magnet može da pomjera naelektrisane čestice ili one njega mogu da pomjeraju ako se kreću). Sa pravom postavkom, može se dobiti snop mono-energetskih iona iz akceleratora pa ih poslati putem odvajaća za uklanjanje elektrona (tako da ostane samo jezgro atoma), a zatim ih poslati kroz magnet za odvajanje komponenti prema brzinama (koja ovisi o odnosu mase iona i  energije odnosno brzine, jer u zavisnosti od brzine kretanja i njihove mase, naelektrisane čestice se više ili manje odklanjaju u magnetskom polju). Iz magnetskog odklona može se dobiti odnos naboja i mase, a iz tog se može dobiti tačan broj protona u sastavu (količina naboja se očita) i broj neutrona (od broja protona i mase). Ovo je srce masene spektrometrije (iako se može koristiti vrijeme-leta tehnika ili magnetska separacija).

Animacija: Na ovoj animaciji vidimo kako se naelektrisane čestice protoni ili elektroni šalju kroz detektor njihovih brzina i detektor vrste naboja, gdje se pozitivno naelektrisane čestice odklanjaju na jednu stranu, a negativne na drugu). U zavisnosti od brzine kretanja i mase, naelektrisane čestice koje se puštaju s lijeva će se više ili manje odkloniti, a na osnovu tog odklona, možemo odrediti odnos mase i brzine kretanja, a na osnovu tog odnosa možemo odrediti broj protona odnosno elektrona. Izvor:

Dakle, to znači da samo znamo odnos između elemenata, ali ne baš broj od elektrona / protona. Naučnici u cijelom svijetu su se složili da atom vodika (H) ima 1 pozitivnu i 1 negativnu česticu i na osnovu odnosa možemo reći da i drugi  elementi kao što su Na (natrij), imaju X puta više mase nego H i tako bi trebalo da ima x puta više elektrona / protona. U osnovi je to tako, međutim malo je ipak komplikovanije od toga – svaki odnos daje cijeli broj protona. Dakle, proton može biti kompozitna čestica, što u biti jest na dovoljno visokim energijama (brzinama). Ali bez obzira na to koliko podijelite  atom, možete uvijek dobiti cijeli broj jedinica +1 naboja elektrona, što je jedinična količina naboja.

Da rezimiram: Prvo se odredi broj protona na osnovu njihovog nalektrisanja i odnosa mase i brzine koji se dobije na osnovu odklona snopa u magnetskom polju. Na osnovu toga se dobije i broj elektrona, jer je broj elektrona jednak broju protona. Iz broja  protona može se dobiti i broj neutrona. 

Kako su fizičari otkrili koliko koji atom ima elektrona, protona i neutrona?

S obzirom da znamo da svaki atom da bi bio stabilan mora biti električki neutralan (kako to znamo ti je drugo pitanje), broj elektrona mora biti jednak broju protona.

Dakle, pitanje je stvarno kako znamo koliko protona i koliko elektrona koji atom ima. To je zapravo vrlo zanimljivo pitanje koje datira iz ranih dana (pa čak i ranije) nuklearne fizike i kemije.

Danas se to može učiniti prilično lako sa ionskim (ioni su naelektrisane čestice) akceleratorom (ubrzivaćem čestica) i magnetom(magnetom jer magnet može da pomjera naelektrisane čestice ili one njega mogu da pomjeraju ako se kreću). Sa pravom postavkom, može se dobiti snop mono-energetskih iona iz akceleratora pa ih poslati putem odvajaća za uklanjanje elektrona (tako da ostane samo jezgro atoma), a zatim ih poslati kroz magnet za odvajanje komponenti prema brzinama (koja ovisi o odnosu mase iona i  energije odnosno brzine, jer u zavisnosti od brzine kretanja i njihove mase, naelektrisane čestice se više ili manje odklanjaju u magnetskom polju). Iz magnetskog odklona može se dobiti odnos naboja i mase, a iz tog se može dobiti tačan broj protona u sastavu (količina naboja se očita) i broj neutrona (od broja protona i mase). Ovo je srce masene spektrometrije (iako se može koristiti vrijeme-leta tehnika ili magnetska separacija).

Animacija: Na ovoj animaciji vidimo kako se naelektrisane čestice protoni ili elektroni šalju kroz detektor njihovih brzina i detektor vrste naboja, gdje se pozitivno naelektrisane čestice odklanjaju na jednu stranu, a negativne na drugu). U zavisnosti od brzine kretanja i mase, naelektrisane čestice koje se puštaju s lijeva će se više ili manje odkloniti, a na osnovu tog odklona, možemo odrediti odnos mase i brzine kretanja, a na osnovu tog odnosa možemo odrediti broj protona odnosno elektrona. Izvor:

Dakle, to znači da samo znamo odnos između elemenata, ali ne baš broj od elektrona / protona. Naučnici u cijelom svijetu su se složili da atom vodika (H) ima 1 pozitivnu i 1 negativnu česticu i na osnovu odnosa možemo reći da i drugi  elementi kao što su Na (natrij), imaju X puta više mase nego H i tako bi trebalo da ima x puta više elektrona / protona. U osnovi je to tako, međutim malo je ipak komplikovanije od toga – svaki odnos daje cijeli broj protona. Dakle, proton može biti kompozitna čestica, što u biti jest na dovoljno visokim energijama (brzinama). Ali bez obzira na to koliko podijelite  atom, možete uvijek dobiti cijeli broj jedinica +1 naboja elektrona, što je jedinična količina naboja.

Da rezimiram: Prvo se odredi broj protona na osnovu njihovog nalektrisanja i odnosa mase i brzine koji se dobije na osnovu odklona snopa u magnetskom polju. Na osnovu toga se dobije i broj elektrona, jer je broj elektrona jednak broju protona. Iz broja  protona može se dobiti i broj neutrona. 

Šta je to nuklearna fisija?

Nuklearna fisija

Jedna od mogućih reakcija nuklearne fisije: atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisijski produkti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV).

Model tekuće kapljice atomske jezgre

Nuklearna fisija (lat. fissio, razdvajanje, dijeljenje) je ona vrsta nuklearne reakcije, koja nastaje kad se jezgra atoma nekog kemijskog elementa cijepa na dva fisijska produkta ili fisiona fragmenta sličnih masa, uz emisiju jednog ili više neutrona, te velike količine energije. Tijekom procesa fisije dolazi do oslobađanja energije, jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Spontana fisija jezgre događa se vrlo sporo, no kod nekih teških jezgri moguće je inicirati bržu reakciju fisije djelovanjem sporih neutrona s tom jezgrom. Takve jezgre koje su podložne fisiji sporim neutronima nazivamo fisilnim jezgrama. Osim jezgara izotopa uranija-233 i uranija-235, te plutonija-239, fisibilna je i jezgra izotopa plutonija-241. Jedini fisilni izotop koji postoji u prirodi je izotop uranija-235. Energija oslobođena fisijom uranija-235 iznosi približno 200 MeV. Dvije lakše jezgre koje nastaju fisijom radioaktivne su i zovu se fisijski fragmenti ili fisijski produkti.

Da bi se nuklearna fisija mogla koristiti kao energetski izvor potrebno je stvoriti uvjete u kojima će se ta reakcija događati kontinuirano. Kontinuiranu fisijsku reakciju moguće je ostvariti jer se fisijom fisibilnih izotopa stvaraju dva do tri neutrona koji mogu izazvati fisiju u drugim jezgrama fisibilnih izotopa. Takva se reakcija naziva fisijska nuklearna lančana reakcija. Mase fisijskih produkata se najčešće odnose u omjeru 3:2, a vjerovatnost da dođe do nuklearne fisije je 2 do 4 puta na 1000 događaja.

Nuklearna se fisija u nekih teških jezgara odvija spontano, kao oblik radioaktivnog raspada, tako da se teška jezgra cijepa na dva dijela, tj. X → A + B. Vjerojatnost događanja spontane fisije je vrlo mala. Dovođenjem jezgre u pobuđeno stanje vjerojatnost se fisije znatno povećava. To je stanje najlakše postići u neparnih jezgara uranija-235, uranija-233 i plutonija-239, gdje apsorpcija i sasvim sporog neutrona dovodi jezgru u pobuđenje dovoljno za fisiju.

Jezgre koje su nastale fisijama zovu se fisijski fragmenti ili fisijski produkti. Fisijski produkti su radioaktivni i glavni su izvor radioaktivnosti u istrošenom nuklearnom gorivu. Procesom fisije dolazi do oslobađanja energije jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Energija oslobođena fisijom jezgre izotopa uranija-235 iznosi približno 200 MeV i prenosi se na okolni medij u obliku toplinske energije.

Energija dobivena fisijom jednog kilograma izotopa uranija-235 jednaka je energiji koja bi se dobila izgaranjem 1 300 tona ugljena ili 1 350 tona nafte. Da bi se taj veliki energijski potencijal fisije mogao iskoristiti kao energetski izvor potrebno je omogućiti kontinuirano odvijanje fisijske reakcije. Dva do tri neutrona koji se oslobađaju tijekom fisijske reakcije mogu izazvati reakciju fisije na drugim jezgrama fisibilnog izotopa i na taj način nastaviti nuklearnu lančanu reakciju fisije. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu nuklearni reaktori.

Povijest

Godine 1919. Ernest Rutherford je, bombardirajući dušik alfa-česticama izveo prvu nuklearnu pretvorbu (transmutaciju) jednog kemijskog elementa u drugi. Pri procesu je nastao kisik, tako je izvršena prva nuklearna reakcija: dušik-14 + α (alfa-čestica) → kisik-17 + p (proton). 1932. Rutherfordove kolege John Cockcroft i Ernest Walton su bombardirali atom litija-7 s protonima, koji se raspao na dvije alfa-čestice. Taj pokus je nazvan cijepanje atoma.

Nakon što je James Chadwick otkrio neutron 1932., talijanski fizičar Enrico Fermi 1934. ozračuje uranij sporim neutronima i zapazio je da se kao proizvod javlja nekoliko novih atoma, koji se razlikuju po vremenu poluraspada. Fermi je smatrao da je bombardiranje uranija-235 sporim neutronima izazvalo nuklearnu reakciju, pri kojoj su nastali novi radioaktivni elementi, s atomskim brojem iznad 92, nestabilni kemijski elementi s rednim brojem 93, 94 i većim brojevima, koji se nazivaju transuranijski elementi.

Uranij-235

Uranij je u to vrijeme bio posljednji kemijski element u periodnom sustavu elemenata. Na osnovu pouzdanih rezultata koji su dobiveni pomoću kemijskog razdvajanja i proučavanja beta-čestica, utvrđeno je da produkti nuklearne pretvorbe uranija-235 sa sporim neutronima, nisu transuranijski elementi, već elementi iz sredine periodnog sustava. Otto Hahn i Fritz Strassmann su 1938. otkrili da je jedan od produkata barij. Marie Curie je u svojim pokusima 1939. dobila lantan. Ni jedna grupa znanstvenika nije dobila transuranijske elemente, a kasnije su Otto Hahn i Fritz Strassmann dobili itrij, stroncij, kripton, ksenon i druge elemente iz sredine perodnog sustava.

Ovu zagonetku s nuklearnom reakcijom uranija-235 pravilno je riješila Lise Meitner i njen nećak Otto Robert Frisch. Oni su 1939. pretpostavili da se uranij-235 hvatanjem sporog neutrona cijepa na dva fisijska fragmenta, jedan je atom barija, a drugi atom kriptona. Ovu nuklearnu reakciju pri kojoj se uranija-235 cijepa na dva približno jednaka fisijska fragmenta su nazvali nuklearna fisija. Oni su ukazali da su fragmenti nuklearne fisije vrlo nestabilni i da zbog odnosa neutrona i protona u njima, nastaje čitav niz beta-raspada. Utvrđeno je da se atomske mase fisijskih fragmenata nalaze u području s atomskom masom od 70 do 160, i da nuklearna fisija nije simetrična, pa se mase fisijskih fragmenata odnose u omjeru 2:3.

Krivulja prosječne energije vezanja po nukleonu

Nuklearni udarni presjek uranija-235 u ovisnosti od brzine ili energije (temperature) neutrona

Jedna od mogućih nuklearnih fisijskih lančanih reakcija: 1. Atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisioni fragmenti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 2. Jedan od tih neutrona bude uhvaćen od atoma uranija-238 i ne nastavlja reakciju. Drugi neutron napušta sustav bez da bude uhvaćen. Ipak, jedan od neutrona se sudara s novim atomom uranija-235, koji se raspada na dva nova atoma (fisioni fragmenti), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 3. Dva se neutrona sudaraju s dva atoma uranija-235 i svaki se raspada i nastavlja reakciju.

Produkti nuklearne fisije ili fisijski fragmenti se mogu podijeliti u dvije grupe, i to na laku grupu elemenata s atomskim brojem od 85 do 104 i tešku grupu elemenata s atomskim brojem od 130 do 149. Sporim neutronima se može izazvati nuklearna fisija uranija-235, ali ne i kod uranija-238. Nuklearna fisija uranija-235 se odvija na 30-tak načina. U vrlo kratkom vremenu od 10-12 sekunda atomska jezgra uranija-235 izbaci 2 do 3 neutrona. Ovi fisijski neutroni su brzi, ali kratkog života, manje od 10-14 sekundi. Osim fisijskih neutrona, nastaju i zakašnjeli neutroni, koje emitiraju fisijski fragmenti i njihovo vrijeme poluraspada je od 0,05 sekundi do 120 minuta. Iako zakašnjeli neutroni čine samo malen dio oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju nuklearnih reaktora.

Pomoću sporih (termičkih) neutrona ne nastaje nuklearna fisija samo kod uranija-235, već i kod uranija-233 i plutonija-239 (nuklearno gorivo). Nuklearne fisije su ostvarene i kod atomskih jezgri drugih teških elemenata, i to ne samo djelovanjem neutrona, već i sa nekim električki nabijenim česticama kao što su proton, deuterij i alfa-čestica, pomoću akceleratora čestica. Nuklearna fisija može nastati i djelovanjem gama-čestica, kao što su poznati primjeri bizmuta, olova, žive, zlata, platine i tantala.

Model tekuće kapljice atomske jezgre

Mehanizam nuklearne fisije objašnjava se teorijom nuklearne fisije, koju su iznijeli Niels Bohr i J.A.Wheeler 1939. , koju su je nazvali model tekuće kapljice atomske jezgre. Oni su pretpostavili da je djelovanje nuklearnih sila slično djelovanju privlačnih sila između molekula u kapljici vode, koja zauzima oblik kugle i suprostavlja se svojoj promjeni oblika. Kad u atomsku jezgru uranija-235 uleti spori neutron, on svoju energiju preda nukleonima u toj jezgri. Uslijed toga nastaje njihovo brže kretanje i jezgra uranija-235, koju treba promatrati kao kapljicu tekućine oblika kugle, prolazi kroz niz promjena stanja i oblika. Kapljica se najprije izdužuje u elipsoid (oblik jajeta). Ako u kapljici ne postoji dovoljna količina energije da se svlada sila napetosti površine, ona će poslije titranja zauzeti ponovno svoj sferni oblik. Ali pri dovoljnoj količini energije, sila koja vrši promjenu oblika izazvat će udubljivanje kapljice u sredini i kapljica će dobiti oblik sličan kao kikiriki. U tom slučaju, elektrostatička odbijajuća Coulombova sila može svladati rezidualnu jaku nuklearnu silu, pa će se kapljica rascijepiti u dva dijela, koja će biti izbačena u različitim smjerovima. Dva fisijska fragmenta će dobiti na kraju oblik kugle. Tako će nastati dva odvojena atomska jezgra različitih elemenata, koji će težiti stabilnijem stanju, pa će izbaciti jedan ili više neutrona.

Smatra se da nesimetrična priroda nuklearne fuzije nastaje zbog toga što se atomska jezgra sastoji od nekoliko slojeva. Pretpostavlja se da se simetrično cijepaju samo vanjski slojevi, a unutrašnji dio jezgre se uopće ne cijepa, nego izlijeće zajedno s jednom polovinom nukleona iz vanjskih slojeva. Fisioni fragmenti izlijeću velikom brzinom i zagrijavaju okolinu u kojoj nastaju.

Fisioni fragmenti uranija-235 zbog velikog broja neutrona, kojih je više nego u stabilnim izotopima elemenata, su vrlo nestabilni. Svi fisioni fragmenti su elektronski aktivni i poslije niza uzastopnih beta-raspada prelaze u stabilne izotope. To znači da svaki fisioni fragment ima svoj svojstveni radioaktivni niz. Pošto se pri emisiji beta-čestica mijenja atomska masa tog atoma, normalno je da se atomski broj takvog atoma povećava za jedan. Pri nuklearnoj fisiji uranija-235 otkriveno je preko 300 različitih aktivnih produkata fisije.

Kako pri nuklearnoj fisiji nastaje velik broj beta-čestica i gama-čestica, ova jaka radioaktivnost stvara zatrovanje (kontaminaciju), uslijed čega dolazi do oštećenja ljudskog organizma, koji su im izloženi. Zbog toga osoblje koje radi u nuklearnim reaktorima mora upotrebljavati zaštitna sredstva.

Svojstava nuklearne fisije

Nuklearna energija vezanja atomske jezgre

Nuklearna energija vezanja atomske jezgre je energija koja drži nukleone na okupu. Ta energija ima različite vrijednosti za različite jezgre, a raste s porastom masenog broja. Zbog takve razlike u energiji vezanja, neke su jezgre nestabilne i raspadaju se pretvarajući se u druge stabilnije jezgre. Učestalost raspada je povezana uz vrijeme poluraspada, koje se definira kao vrijeme koje je potrebno da se raspadne polovica jezgri nekog uzorka. Vrijeme poluraspada različitih jezgri može imati vrijednosti između dijelića sekunde pa sve do nekoliko milijardi godina.

Nuklearni udarni presjek

Nuklearni udarni presjek je vrlo važan pojam kojim se određuje iskoristljivost neke nuklearne reakcije ili vjerovatnost da dođe do sudara između neke ulazne čestice i atomske jezgre nekog atoma. Mjerna jedinica za nuklearni udarni presjek je 1 barn, a to iznosi 1 x 10-28 m2. Tako je na primjer nuklearni udarni presjek za uranij-235 i spore (termičke) neutrone 700 x 10-28 m2 ili 700 barna.

Nuklearna lančana reakcija

Nuklearna lančana reakcija nastaje uslijed samoodržanja nuklearne fisije, tako da fisijski neutroni, kojih je prosječno oko 2,5 po fisiji jedne jezgre, uzrokuju nove fisije. Samoodržanje nuklearne fisije može se ostvariti ako bar jedan od tih neutrona prouzroči novu fisiju u okolnim jezgrama. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu nuklearni reaktori.

Temeljni princip lančane reakcije prilično je jednostavan. Atom uranija-235 apsorbira neutron, koji uzrokuje njegovo cijepanje. Pri cijepanju se oslobađa energija i u prosjeku dva do tri nova neutrona, koji mogu izazvati nova cijepanja. Taj se proces naziva nuklearnom lančanom reakcijom. U nuklearnom reaktoru proces lančane reakcije kontroliramo, jer od dva do tri novonastala neutrona pri cijepanju u prosjeku samo jedan uzrokuje novo cijepanje urana 235. U reaktoru se, dakle, odvija kontrolirana lančana reakcija.

Nakon cijepanja nastaju dvije vrste neutrona: fisijski i zakašnjeli. Fisijski neutroni se oslobađaju neposredno nakon cijepanja, a zakašnjeli kasnije, i to samo nakon raspada nekih fragmenata, odnosno njihovih potomaka. Iako zakašnjeli neutroni čine samo malen dio, oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju reaktora.

Svi fragmenti i većina njihovih potomaka radioaktivni su i raspadaju se. U prosjeku su do konačnoga stabilnog izotopa potrebna tri do četiri radioaktivna raspada. Većinom je riječ o beta- i gama-raspadu, pri čemu se oslobađaju beta-čestice, odnosno gama-zrake. Energija koja se oslobađa u tim raspadima naziva se zakašnjelom toplinom.

Za odvijanje lančane reakcije odlučne su dvije veličine: neutronski prinos k i trajanje fisijske generacije τ u lančanoj reakciji. Trajanjem jedne fisijske generacije naziva se prosječno vrijeme između dviju uzastopnih fisija (da bi fisijski neutroni bili emitirani iz neke jezgre i dospjeli do drugih fisibilnih jezgara potrebno je neko vrijeme). Neutronski prinos k je omjer broja neutrona nastalih u fisijskom procesa prema broju neutrona nastalih u prethodnom fisijskom procesu. Lančana je reakcija nadkritična ako je k > 1, podkritična ako je k < 1. Ako je k = 1, lančana reakcija održava se trajno s istim brojem fisija u jediničnom obujmu. Kontrolom neutronskog prinosa kontrolira se broj neutrona, koriste se štapovi od kadmija koji se uvlače u reaktorsku jezgru i apsorbiraju neutrone.

Izvori

  1. Arora M. G., Singh M.: “Nuclear Chemistry”, publisher = Anmol Publications,  1994.
  2. Saha Gopal: “Fundamentals of Nuclear Pharmacy”, publisher = Springer Science+Business Media, 2010.
  3. “Uvod u nuklearnu energetiku”, Prof. dr. sc. Danilo Feretić, 2011.
  4. “Od rude do žutog kolača”, Nuklearna elektrana Krško, 2011.

Šta je to nuklearna fisija?

Nuklearna fisija

Jedna od mogućih reakcija nuklearne fisije: atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisijski produkti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV).

Model tekuće kapljice atomske jezgre

Nuklearna fisija (lat. fissio, razdvajanje, dijeljenje) je ona vrsta nuklearne reakcije, koja nastaje kad se jezgra atoma nekog kemijskog elementa cijepa na dva fisijska produkta ili fisiona fragmenta sličnih masa, uz emisiju jednog ili više neutrona, te velike količine energije. Tijekom procesa fisije dolazi do oslobađanja energije, jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Spontana fisija jezgre događa se vrlo sporo, no kod nekih teških jezgri moguće je inicirati bržu reakciju fisije djelovanjem sporih neutrona s tom jezgrom. Takve jezgre koje su podložne fisiji sporim neutronima nazivamo fisilnim jezgrama. Osim jezgara izotopa uranija-233 i uranija-235, te plutonija-239, fisibilna je i jezgra izotopa plutonija-241. Jedini fisilni izotop koji postoji u prirodi je izotop uranija-235. Energija oslobođena fisijom uranija-235 iznosi približno 200 MeV. Dvije lakše jezgre koje nastaju fisijom radioaktivne su i zovu se fisijski fragmenti ili fisijski produkti.

Da bi se nuklearna fisija mogla koristiti kao energetski izvor potrebno je stvoriti uvjete u kojima će se ta reakcija događati kontinuirano. Kontinuiranu fisijsku reakciju moguće je ostvariti jer se fisijom fisibilnih izotopa stvaraju dva do tri neutrona koji mogu izazvati fisiju u drugim jezgrama fisibilnih izotopa. Takva se reakcija naziva fisijska nuklearna lančana reakcija. Mase fisijskih produkata se najčešće odnose u omjeru 3:2, a vjerovatnost da dođe do nuklearne fisije je 2 do 4 puta na 1000 događaja.

Nuklearna se fisija u nekih teških jezgara odvija spontano, kao oblik radioaktivnog raspada, tako da se teška jezgra cijepa na dva dijela, tj. X → A + B. Vjerojatnost događanja spontane fisije je vrlo mala. Dovođenjem jezgre u pobuđeno stanje vjerojatnost se fisije znatno povećava. To je stanje najlakše postići u neparnih jezgara uranija-235, uranija-233 i plutonija-239, gdje apsorpcija i sasvim sporog neutrona dovodi jezgru u pobuđenje dovoljno za fisiju.

Jezgre koje su nastale fisijama zovu se fisijski fragmenti ili fisijski produkti. Fisijski produkti su radioaktivni i glavni su izvor radioaktivnosti u istrošenom nuklearnom gorivu. Procesom fisije dolazi do oslobađanja energije jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Energija oslobođena fisijom jezgre izotopa uranija-235 iznosi približno 200 MeV i prenosi se na okolni medij u obliku toplinske energije.

Energija dobivena fisijom jednog kilograma izotopa uranija-235 jednaka je energiji koja bi se dobila izgaranjem 1 300 tona ugljena ili 1 350 tona nafte. Da bi se taj veliki energijski potencijal fisije mogao iskoristiti kao energetski izvor potrebno je omogućiti kontinuirano odvijanje fisijske reakcije. Dva do tri neutrona koji se oslobađaju tijekom fisijske reakcije mogu izazvati reakciju fisije na drugim jezgrama fisibilnog izotopa i na taj način nastaviti nuklearnu lančanu reakciju fisije. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu nuklearni reaktori.

Povijest

Godine 1919. Ernest Rutherford je, bombardirajući dušik alfa-česticama izveo prvu nuklearnu pretvorbu (transmutaciju) jednog kemijskog elementa u drugi. Pri procesu je nastao kisik, tako je izvršena prva nuklearna reakcija: dušik-14 + α (alfa-čestica) → kisik-17 + p (proton). 1932. Rutherfordove kolege John Cockcroft i Ernest Walton su bombardirali atom litija-7 s protonima, koji se raspao na dvije alfa-čestice. Taj pokus je nazvan cijepanje atoma.

Nakon što je James Chadwick otkrio neutron 1932., talijanski fizičar Enrico Fermi 1934. ozračuje uranij sporim neutronima i zapazio je da se kao proizvod javlja nekoliko novih atoma, koji se razlikuju po vremenu poluraspada. Fermi je smatrao da je bombardiranje uranija-235 sporim neutronima izazvalo nuklearnu reakciju, pri kojoj su nastali novi radioaktivni elementi, s atomskim brojem iznad 92, nestabilni kemijski elementi s rednim brojem 93, 94 i većim brojevima, koji se nazivaju transuranijski elementi.

Uranij-235

Uranij je u to vrijeme bio posljednji kemijski element u periodnom sustavu elemenata. Na osnovu pouzdanih rezultata koji su dobiveni pomoću kemijskog razdvajanja i proučavanja beta-čestica, utvrđeno je da produkti nuklearne pretvorbe uranija-235 sa sporim neutronima, nisu transuranijski elementi, već elementi iz sredine periodnog sustava. Otto Hahn i Fritz Strassmann su 1938. otkrili da je jedan od produkata barij. Marie Curie je u svojim pokusima 1939. dobila lantan. Ni jedna grupa znanstvenika nije dobila transuranijske elemente, a kasnije su Otto Hahn i Fritz Strassmann dobili itrij, stroncij, kripton, ksenon i druge elemente iz sredine perodnog sustava.

Ovu zagonetku s nuklearnom reakcijom uranija-235 pravilno je riješila Lise Meitner i njen nećak Otto Robert Frisch. Oni su 1939. pretpostavili da se uranij-235 hvatanjem sporog neutrona cijepa na dva fisijska fragmenta, jedan je atom barija, a drugi atom kriptona. Ovu nuklearnu reakciju pri kojoj se uranija-235 cijepa na dva približno jednaka fisijska fragmenta su nazvali nuklearna fisija. Oni su ukazali da su fragmenti nuklearne fisije vrlo nestabilni i da zbog odnosa neutrona i protona u njima, nastaje čitav niz beta-raspada. Utvrđeno je da se atomske mase fisijskih fragmenata nalaze u području s atomskom masom od 70 do 160, i da nuklearna fisija nije simetrična, pa se mase fisijskih fragmenata odnose u omjeru 2:3.

Krivulja prosječne energije vezanja po nukleonu

Nuklearni udarni presjek uranija-235 u ovisnosti od brzine ili energije (temperature) neutrona

Jedna od mogućih nuklearnih fisijskih lančanih reakcija: 1. Atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisioni fragmenti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 2. Jedan od tih neutrona bude uhvaćen od atoma uranija-238 i ne nastavlja reakciju. Drugi neutron napušta sustav bez da bude uhvaćen. Ipak, jedan od neutrona se sudara s novim atomom uranija-235, koji se raspada na dva nova atoma (fisioni fragmenti), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 3. Dva se neutrona sudaraju s dva atoma uranija-235 i svaki se raspada i nastavlja reakciju.

Produkti nuklearne fisije ili fisijski fragmenti se mogu podijeliti u dvije grupe, i to na laku grupu elemenata s atomskim brojem od 85 do 104 i tešku grupu elemenata s atomskim brojem od 130 do 149. Sporim neutronima se može izazvati nuklearna fisija uranija-235, ali ne i kod uranija-238. Nuklearna fisija uranija-235 se odvija na 30-tak načina. U vrlo kratkom vremenu od 10-12 sekunda atomska jezgra uranija-235 izbaci 2 do 3 neutrona. Ovi fisijski neutroni su brzi, ali kratkog života, manje od 10-14 sekundi. Osim fisijskih neutrona, nastaju i zakašnjeli neutroni, koje emitiraju fisijski fragmenti i njihovo vrijeme poluraspada je od 0,05 sekundi do 120 minuta. Iako zakašnjeli neutroni čine samo malen dio oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju nuklearnih reaktora.

Pomoću sporih (termičkih) neutrona ne nastaje nuklearna fisija samo kod uranija-235, već i kod uranija-233 i plutonija-239 (nuklearno gorivo). Nuklearne fisije su ostvarene i kod atomskih jezgri drugih teških elemenata, i to ne samo djelovanjem neutrona, već i sa nekim električki nabijenim česticama kao što su proton, deuterij i alfa-čestica, pomoću akceleratora čestica. Nuklearna fisija može nastati i djelovanjem gama-čestica, kao što su poznati primjeri bizmuta, olova, žive, zlata, platine i tantala.

Model tekuće kapljice atomske jezgre

Mehanizam nuklearne fisije objašnjava se teorijom nuklearne fisije, koju su iznijeli Niels Bohr i J.A.Wheeler 1939. , koju su je nazvali model tekuće kapljice atomske jezgre. Oni su pretpostavili da je djelovanje nuklearnih sila slično djelovanju privlačnih sila između molekula u kapljici vode, koja zauzima oblik kugle i suprostavlja se svojoj promjeni oblika. Kad u atomsku jezgru uranija-235 uleti spori neutron, on svoju energiju preda nukleonima u toj jezgri. Uslijed toga nastaje njihovo brže kretanje i jezgra uranija-235, koju treba promatrati kao kapljicu tekućine oblika kugle, prolazi kroz niz promjena stanja i oblika. Kapljica se najprije izdužuje u elipsoid (oblik jajeta). Ako u kapljici ne postoji dovoljna količina energije da se svlada sila napetosti površine, ona će poslije titranja zauzeti ponovno svoj sferni oblik. Ali pri dovoljnoj količini energije, sila koja vrši promjenu oblika izazvat će udubljivanje kapljice u sredini i kapljica će dobiti oblik sličan kao kikiriki. U tom slučaju, elektrostatička odbijajuća Coulombova sila može svladati rezidualnu jaku nuklearnu silu, pa će se kapljica rascijepiti u dva dijela, koja će biti izbačena u različitim smjerovima. Dva fisijska fragmenta će dobiti na kraju oblik kugle. Tako će nastati dva odvojena atomska jezgra različitih elemenata, koji će težiti stabilnijem stanju, pa će izbaciti jedan ili više neutrona.

Smatra se da nesimetrična priroda nuklearne fuzije nastaje zbog toga što se atomska jezgra sastoji od nekoliko slojeva. Pretpostavlja se da se simetrično cijepaju samo vanjski slojevi, a unutrašnji dio jezgre se uopće ne cijepa, nego izlijeće zajedno s jednom polovinom nukleona iz vanjskih slojeva. Fisioni fragmenti izlijeću velikom brzinom i zagrijavaju okolinu u kojoj nastaju.

Fisioni fragmenti uranija-235 zbog velikog broja neutrona, kojih je više nego u stabilnim izotopima elemenata, su vrlo nestabilni. Svi fisioni fragmenti su elektronski aktivni i poslije niza uzastopnih beta-raspada prelaze u stabilne izotope. To znači da svaki fisioni fragment ima svoj svojstveni radioaktivni niz. Pošto se pri emisiji beta-čestica mijenja atomska masa tog atoma, normalno je da se atomski broj takvog atoma povećava za jedan. Pri nuklearnoj fisiji uranija-235 otkriveno je preko 300 različitih aktivnih produkata fisije.

Kako pri nuklearnoj fisiji nastaje velik broj beta-čestica i gama-čestica, ova jaka radioaktivnost stvara zatrovanje (kontaminaciju), uslijed čega dolazi do oštećenja ljudskog organizma, koji su im izloženi. Zbog toga osoblje koje radi u nuklearnim reaktorima mora upotrebljavati zaštitna sredstva.

Svojstava nuklearne fisije

Nuklearna energija vezanja atomske jezgre

Nuklearna energija vezanja atomske jezgre je energija koja drži nukleone na okupu. Ta energija ima različite vrijednosti za različite jezgre, a raste s porastom masenog broja. Zbog takve razlike u energiji vezanja, neke su jezgre nestabilne i raspadaju se pretvarajući se u druge stabilnije jezgre. Učestalost raspada je povezana uz vrijeme poluraspada, koje se definira kao vrijeme koje je potrebno da se raspadne polovica jezgri nekog uzorka. Vrijeme poluraspada različitih jezgri može imati vrijednosti između dijelića sekunde pa sve do nekoliko milijardi godina.

Nuklearni udarni presjek

Nuklearni udarni presjek je vrlo važan pojam kojim se određuje iskoristljivost neke nuklearne reakcije ili vjerovatnost da dođe do sudara između neke ulazne čestice i atomske jezgre nekog atoma. Mjerna jedinica za nuklearni udarni presjek je 1 barn, a to iznosi 1 x 10-28 m2. Tako je na primjer nuklearni udarni presjek za uranij-235 i spore (termičke) neutrone 700 x 10-28 m2 ili 700 barna.

Nuklearna lančana reakcija

Nuklearna lančana reakcija nastaje uslijed samoodržanja nuklearne fisije, tako da fisijski neutroni, kojih je prosječno oko 2,5 po fisiji jedne jezgre, uzrokuju nove fisije. Samoodržanje nuklearne fisije može se ostvariti ako bar jedan od tih neutrona prouzroči novu fisiju u okolnim jezgrama. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu nuklearni reaktori.

Temeljni princip lančane reakcije prilično je jednostavan. Atom uranija-235 apsorbira neutron, koji uzrokuje njegovo cijepanje. Pri cijepanju se oslobađa energija i u prosjeku dva do tri nova neutrona, koji mogu izazvati nova cijepanja. Taj se proces naziva nuklearnom lančanom reakcijom. U nuklearnom reaktoru proces lančane reakcije kontroliramo, jer od dva do tri novonastala neutrona pri cijepanju u prosjeku samo jedan uzrokuje novo cijepanje urana 235. U reaktoru se, dakle, odvija kontrolirana lančana reakcija.

Nakon cijepanja nastaju dvije vrste neutrona: fisijski i zakašnjeli. Fisijski neutroni se oslobađaju neposredno nakon cijepanja, a zakašnjeli kasnije, i to samo nakon raspada nekih fragmenata, odnosno njihovih potomaka. Iako zakašnjeli neutroni čine samo malen dio, oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju reaktora.

Svi fragmenti i većina njihovih potomaka radioaktivni su i raspadaju se. U prosjeku su do konačnoga stabilnog izotopa potrebna tri do četiri radioaktivna raspada. Većinom je riječ o beta- i gama-raspadu, pri čemu se oslobađaju beta-čestice, odnosno gama-zrake. Energija koja se oslobađa u tim raspadima naziva se zakašnjelom toplinom.

Za odvijanje lančane reakcije odlučne su dvije veličine: neutronski prinos k i trajanje fisijske generacije τ u lančanoj reakciji. Trajanjem jedne fisijske generacije naziva se prosječno vrijeme između dviju uzastopnih fisija (da bi fisijski neutroni bili emitirani iz neke jezgre i dospjeli do drugih fisibilnih jezgara potrebno je neko vrijeme). Neutronski prinos k je omjer broja neutrona nastalih u fisijskom procesa prema broju neutrona nastalih u prethodnom fisijskom procesu. Lančana je reakcija nadkritična ako je k > 1, podkritična ako je k < 1. Ako je k = 1, lančana reakcija održava se trajno s istim brojem fisija u jediničnom obujmu. Kontrolom neutronskog prinosa kontrolira se broj neutrona, koriste se štapovi od kadmija koji se uvlače u reaktorsku jezgru i apsorbiraju neutrone.

Izvori

  1. Arora M. G., Singh M.: “Nuclear Chemistry”, publisher = Anmol Publications,  1994.
  2. Saha Gopal: “Fundamentals of Nuclear Pharmacy”, publisher = Springer Science+Business Media, 2010.
  3. “Uvod u nuklearnu energetiku”, Prof. dr. sc. Danilo Feretić, 2011.
  4. “Od rude do žutog kolača”, Nuklearna elektrana Krško, 2011.

Šta je to atomska fizika?

Atomska fizika

Atomska fizika ili fizika atoma je grana fizike, koja se bavi izučavanjem strukture atoma i elektronskog omotača, energetskim nivoima, spektrima, kao izračunavanjem fizičkih veličina i osobina, koje se zatim koriste u srodnim naukama.

Atomska fizika je nekad sinonim za Nuklearnu fiziku, međutim ove termine ne treba mešati, jer se atomska fizika ne bavi osnovnim procesima u okviru jezgra, odnosno ne bavi se proučavanjem nuklearne fizike samog jezgra, mada ponekad karakteristike strukture jezgra imaj uticaj na svojstva atoma.

Istorija

Ideja o postojanju atoma nije nova. Još su Stari Grci koristili reč atom da bi opisali najmanje čestice materije Saznanja o prirodi atoma razvijala su se vrlo sporo sve do početka 20. veka, a do kraja 20. veka postavljeni su različiti modeli strukture atoma.

Jedan od začetnika atomske fizike bio je Džozef Džon Tomson, koji je 1879. godine otkrio elektron i pretpostavio da se atom sastoji od jednakog broja pozitivnih i negativnih naelektrisanja. Ispitivao je slabe pozitivno naelektrisane zrake i dokazao da se ovi sastoje od pozitivnih čestica čija masa daleko prevazilazi masu elektrona. On je pravilno zaključio da te čestice predstavljaju ostatak atoma posle izlaska elektrona iz njega. Pre Tomsona atom je zamišljan kao mala bilijarska kugla. Tomson nije samo odredio apsolutnu masu te kugle, već je ustanovio da male, negativno naelektrisane čestice mogu da se odvoje od nje, ostavljajući joj pozitivno naelektrisanje. Na osnovu toga Tomson je zaključio da je materija građena od smeše međusobno vrlo blizu nanizanih atoma. Po njemu je atom pozitivno nabijena kuglica u kojoj su vrlo sitni elektroni ravnomerno raspoređeni. Predložio je model u kome su atomi predstavljani kao ovalni puding ili kolač sa suvim šljivama u omotaču (engl. plum puding). Bez obzira na brojne nedostatke, Tomsonov model atoma bio je značajan, jer je prvi put u istoriji ukazano na postojanje unutrašnje strukture atoma.

Druga značajna grupa istraživača se bavila pojavom prirodne radioaktivnosti koju je otkrio 1896. godine Anri Bekerel. Ključnu ulogu u ovoj grupi odigrao su i Raderford, Pjer i Marija, koji su u velikoj meri zaslužni za ra razvoj metoda za ekstrahovanje i koncentrovanje prirodno radioaktivnog materijala. Bekerel i Marija i Pjer Kiri su 1903. godine dobili Nobelovu nagradu za fiziku. Sama Marija Kiri je kasnije, 1911. dobila još jednu Nobelovu nagradu iz oblasti hemije. Inače, radioaktivnost predstavlja raspad atoma, pri čemu se emituju tri vrste zračenja: alfa, beta i gama. Raderford je prvi utvrdio razliku između njih i ispitao njihove osobine. Pokazao je da alfa zrake sačinjava mlaz pozitivno naelektrisanih čestica, čijim je rasejavanjem na tankim zlatnim folijama postavio nuklearni model atoma, 1911. godine.

Konačno, treća grupa fizičara u kojoj je vodeću ulogu imao Maks Plank ispitivala je zakone zračenja crnog tela. Najvažnije otkriće te grupe ovde je da se emisija zračenja odvija u kvantima, tj. isprekidano, a ne neprekidno kao što je to predviđala klasična teorijska fizika.

Nils Bor je 1913. godine objedinivši rezultate sva tri navedena pravca istraživanja, predložio poznati model atoma, kojim je postavio temelje današnjeg shvatanja strukture atoma. Od prve grupe koja se odnosi atomsku fiziku on je usvojio postojanje i osobine elektrona, od druge grupe nuklearnom strukturu atoma , a od treće činjenice da atom emituje svetlost u kvantima.

Postojanje pozitivno naelektrisanih čestica u jezgru atoma, dokazao je Ernest Raderford 1919. godine. Naelektrisanje protona jednako je ali suprotno naelektrisanju elektrona. Broj protona u jezgru određuje karakteristike elementa. Utvrđeno je da je masa protona iznosi 1,67 x 10−27 kilograma.

Poznati atomski fizičari

Poznata imena atomske fizike uključuju:

Pre kvantne mehanike

  • Džon Dalton
  • Joseph von Fraunhofer
  • Johanes Ridberg
  • Džozef Džon Tomson

Posle kvantne mehanike

  • Alexander Dalgarno
  • David Bates
  • Nils Bor
  • Max Born
  • Clinton Josip Davisson
  • Enrico Fermi
  • Charlotte Froese Fischer
  • Vladimir Fock
  • Douglas Hartree
  • Ernest M. Henley
  • Ratko Janev
  • Harrie S. Massey
  • Nevill Mott
  • Mike Seaton
  • John C. Slater
  • Džordž Padžet Tomson

Reference

  1.  Fizički fakultet u Beogradu: Fizika atoma, pristup 9. mart 2013
  2.  Oksford, školska enciklopedija: Atom, tom 1. ISBN 978-86-7712-190-7. pp. 65
  3. Atomic archive: „Introduction to Atomic Physics“, pristup 9. mart 2013
  4.  Sveučilište Josipa Jurja Strossmayera Osijek: „Uvod u atomsku fiziku“, dr. Branko Vuković, pristup 9. mart 2013
  5.  Kabinet fizike Tehničke škole Tesla: Uvod u kvantnu i atomsku fiziku, Prof. Negovec, pristup 9. mart 2013
  6. Atomic archive: „Atomic Structure“, pristup 9. mart 2013

Šta je to atomska fizika?

Atomska fizika

Atomska fizika ili fizika atoma je grana fizike, koja se bavi izučavanjem strukture atoma i elektronskog omotača, energetskim nivoima, spektrima, kao izračunavanjem fizičkih veličina i osobina, koje se zatim koriste u srodnim naukama.

Atomska fizika je nekad sinonim za Nuklearnu fiziku, međutim ove termine ne treba mešati, jer se atomska fizika ne bavi osnovnim procesima u okviru jezgra, odnosno ne bavi se proučavanjem nuklearne fizike samog jezgra, mada ponekad karakteristike strukture jezgra imaj uticaj na svojstva atoma.

Istorija

Ideja o postojanju atoma nije nova. Još su Stari Grci koristili reč atom da bi opisali najmanje čestice materije Saznanja o prirodi atoma razvijala su se vrlo sporo sve do početka 20. veka, a do kraja 20. veka postavljeni su različiti modeli strukture atoma.

Jedan od začetnika atomske fizike bio je Džozef Džon Tomson, koji je 1879. godine otkrio elektron i pretpostavio da se atom sastoji od jednakog broja pozitivnih i negativnih naelektrisanja. Ispitivao je slabe pozitivno naelektrisane zrake i dokazao da se ovi sastoje od pozitivnih čestica čija masa daleko prevazilazi masu elektrona. On je pravilno zaključio da te čestice predstavljaju ostatak atoma posle izlaska elektrona iz njega. Pre Tomsona atom je zamišljan kao mala bilijarska kugla. Tomson nije samo odredio apsolutnu masu te kugle, već je ustanovio da male, negativno naelektrisane čestice mogu da se odvoje od nje, ostavljajući joj pozitivno naelektrisanje. Na osnovu toga Tomson je zaključio da je materija građena od smeše međusobno vrlo blizu nanizanih atoma. Po njemu je atom pozitivno nabijena kuglica u kojoj su vrlo sitni elektroni ravnomerno raspoređeni. Predložio je model u kome su atomi predstavljani kao ovalni puding ili kolač sa suvim šljivama u omotaču (engl. plum puding). Bez obzira na brojne nedostatke, Tomsonov model atoma bio je značajan, jer je prvi put u istoriji ukazano na postojanje unutrašnje strukture atoma.

Druga značajna grupa istraživača se bavila pojavom prirodne radioaktivnosti koju je otkrio 1896. godine Anri Bekerel. Ključnu ulogu u ovoj grupi odigrao su i Raderford, Pjer i Marija, koji su u velikoj meri zaslužni za ra razvoj metoda za ekstrahovanje i koncentrovanje prirodno radioaktivnog materijala. Bekerel i Marija i Pjer Kiri su 1903. godine dobili Nobelovu nagradu za fiziku. Sama Marija Kiri je kasnije, 1911. dobila još jednu Nobelovu nagradu iz oblasti hemije. Inače, radioaktivnost predstavlja raspad atoma, pri čemu se emituju tri vrste zračenja: alfa, beta i gama. Raderford je prvi utvrdio razliku između njih i ispitao njihove osobine. Pokazao je da alfa zrake sačinjava mlaz pozitivno naelektrisanih čestica, čijim je rasejavanjem na tankim zlatnim folijama postavio nuklearni model atoma, 1911. godine.

Konačno, treća grupa fizičara u kojoj je vodeću ulogu imao Maks Plank ispitivala je zakone zračenja crnog tela. Najvažnije otkriće te grupe ovde je da se emisija zračenja odvija u kvantima, tj. isprekidano, a ne neprekidno kao što je to predviđala klasična teorijska fizika.

Nils Bor je 1913. godine objedinivši rezultate sva tri navedena pravca istraživanja, predložio poznati model atoma, kojim je postavio temelje današnjeg shvatanja strukture atoma. Od prve grupe koja se odnosi atomsku fiziku on je usvojio postojanje i osobine elektrona, od druge grupe nuklearnom strukturu atoma , a od treće činjenice da atom emituje svetlost u kvantima.

Postojanje pozitivno naelektrisanih čestica u jezgru atoma, dokazao je Ernest Raderford 1919. godine. Naelektrisanje protona jednako je ali suprotno naelektrisanju elektrona. Broj protona u jezgru određuje karakteristike elementa. Utvrđeno je da je masa protona iznosi 1,67 x 10−27 kilograma.

Poznati atomski fizičari

Poznata imena atomske fizike uključuju:

Pre kvantne mehanike

  • Džon Dalton
  • Joseph von Fraunhofer
  • Johanes Ridberg
  • Džozef Džon Tomson

Posle kvantne mehanike

  • Alexander Dalgarno
  • David Bates
  • Nils Bor
  • Max Born
  • Clinton Josip Davisson
  • Enrico Fermi
  • Charlotte Froese Fischer
  • Vladimir Fock
  • Douglas Hartree
  • Ernest M. Henley
  • Ratko Janev
  • Harrie S. Massey
  • Nevill Mott
  • Mike Seaton
  • John C. Slater
  • Džordž Padžet Tomson

Reference

  1.  Fizički fakultet u Beogradu: Fizika atoma, pristup 9. mart 2013
  2.  Oksford, školska enciklopedija: Atom, tom 1. ISBN 978-86-7712-190-7. pp. 65
  3. Atomic archive: „Introduction to Atomic Physics“, pristup 9. mart 2013
  4.  Sveučilište Josipa Jurja Strossmayera Osijek: „Uvod u atomsku fiziku“, dr. Branko Vuković, pristup 9. mart 2013
  5.  Kabinet fizike Tehničke škole Tesla: Uvod u kvantnu i atomsku fiziku, Prof. Negovec, pristup 9. mart 2013
  6. Atomic archive: „Atomic Structure“, pristup 9. mart 2013