Category Archives: Astrofizika

Tamna materija ne postoji, a svemir je star 27 milijardi godina?

Tkivo kozmosa, kako ga trenutno shvaćamo, sastoji se od tri primarne komponente: ‘normalne materije’, ‘tamne energije’ i ‘tamne materije’. Međutim, nova istraživanja ovaj uspostavljeni model okreću naglavačke.

Nedavna studija koju je provelo Sveučilište u Ottawi predstavlja uvjerljive dokaze koji dovode u pitanje tradicionalni model svemira, sugerirajući da u njemu možda nema mjesta za tamnu tvar.

Tamna tvar, termin koji se koristi u kozmologiji, odnosi se na neuhvatljivu tvar koja ne stupa u interakciju sa svjetlom ili elektromagnetskim poljima i koja se može identificirati samo kroz svoje gravitacijske učinke.

Unatoč svojoj misterioznoj prirodi, tamna tvar je bila temeljni element u objašnjenju ponašanja galaksija, zvijezda i planeta.

U središtu ovog istraživanja je Rajendra Gupta, istaknuti profesor fizike na Prirodoslovno-matematičkom fakultetu. Guptin inovativni pristup uključuje integraciju dvaju teorijskih modela: kovarijantnih konstanti sprezanja (CCC) i “umornog svjetla” (TL), zajedno poznatih kao model CCC+TL.

Ovaj model istražuje ideju da se sile prirode smanjuju tijekom kozmičkog vremena i da svjetlost gubi energiju na ogromnim udaljenostima. Ova je teorija rigorozno ispitana i usklađena je s raznim astronomskim opažanjima, uključujući distribuciju galaksija i evoluciju svjetlosti iz ranog svemira.

Posljedice kozmosa bez tamne materije


Ovo otkriće dovodi u pitanje konvencionalno shvaćanje da tamna tvar čini otprilike 27% svemira, pri čemu obična materija čini manje od 5%, a ostatak je tamna energija, dok također redefinira našu perspektivu o starosti i širenju svemira.

Nalazi studije potvrđuju naš prethodni rad, koji je sugerirao da je svemir star 26,7 milijardi godina, negirajući nužnost postojanja tamne tvari,” objašnjava Gupta.

“Suprotno standardnim kozmološkim teorijama gdje se ubrzano širenje svemira pripisuje tamnoj energiji, naša otkrića pokazuju da je to širenje posljedica slabljenja sila prirode, a ne tamne energije”, nastavio je.

Znanost iza Guptinog otkrića


Sastavni dio Guptinog istraživanja uključivao je analizu “crvenog pomaka”, fenomena u kojem se svjetlost pomiče prema crvenom dijelu spektra.

Ispitujući podatke o distribuciji galaksija pri niskim crvenim pomacima i kutnoj veličini horizonta zvuka pri visokim crvenim pomacima, Gupta predstavlja uvjerljiv argument protiv postojanja tamne tvari, dok ostaje dosljedan ključnim kozmološkim promatranjima.

Gupta samouvjereno zaključuje: “Postoji nekoliko radova koji dovode u pitanje postojanje tamne tvari, ali moj je prvi, koliko ja znam, koji eliminira njezino kozmološko postojanje, dok je u skladu s ključnim kozmološkim promatranjima koja smo imali vremena potvrditi.”

Implikacije i budući pravci


Ukratko, inovativno istraživanje Rajendre Gupte temeljito dovodi u pitanje prevladavajući kozmološki model predlažući svemir bez potrebe za tamnom tvari.

Integriranjem kovarijantnih konstanti sprezanja i teorija umorne svjetlosti, Gupta ne osporava samo konvencionalno razumijevanje kozmičkog sastava, već nudi i novu perspektivu širenja i starosti svemira.

Ova ključna studija poziva znanstvenu zajednicu da preispita dugotrajna uvjerenja o tamnoj tvari i postavlja nove uzbudljive puteve za razumijevanje temeljnih sila i svojstava kozmosa.

Kroz marljivu analizu i hrabar pristup, Guptin rad označava značajan korak naprijed u našoj potrazi za dekodiranjem misterija svemira.

Više o tamnoj tvari


Kao što je gore spomenuto, tamna tvar ostaje jedan od najzagonetnijih aspekata našeg svemira. Unatoč svojoj nevidljivosti i činjenici da ne emitira, ne apsorbira i ne reflektira svjetlost, tamna tvar igra presudnu ulogu u kozmosu.

Mnogi znanstvenici, iako svakako ne Rajendra Gupta, zaključuju o njegovoj prisutnosti na temelju gravitacijskih učinaka koje ima na vidljivu materiju, zračenje i veliku strukturu svemira.

Temelj teorije tamne tvari
Teorija tamne tvari proizašla je iz neslaganja između opažene mase velikih astronomskih objekata i njihove izračunate mase na temelju njihovih gravitacijskih učinaka.

U 1930-ima, astronom Fritz Zwicky bio je među prvima koji je sugerirao da bi nevidljiva materija mogla objasniti “nedostajuću” masu u skupu galaksija Coma.

Od tada se gomilaju dokazi, uključujući krivulje rotacije galaksija koje ukazuju na prisutnost mnogo veće mase nego što se može objasniti samo vidljivom materijom.

Uloga u kozmosu


Vjeruje se da tamna tvar čini oko 27% ukupne mase i energije svemira. Za razliku od normalne materije, tamna tvar ne stupa u interakciju s elektromagnetskom silom, što znači da ne apsorbira, ne reflektira niti emitira svjetlost, što ju čini izrazito teškom za izravno otkrivanje.

O njegovoj prisutnosti može se zaključiti kroz gravitacijske učinke na vidljivu tvar, savijanje svjetlosti (gravitacijska leća) i njezin utjecaj na kozmičko mikrovalno pozadinsko zračenje.

Neuhvatljiva potraga


Znanstvenici su razvili nekoliko inovativnih metoda za neizravno otkrivanje tamne tvari. Eksperimenti poput onih koji se provode s podzemnim detektorima čestica i svemirskim teleskopima imaju za cilj promatranje nusproizvoda interakcija tamne tvari ili anihilacije.

Veliki hadronski sudarač (LHC) u CERN-u također traži znakove čestica tamne tvari u sudarima čestica visoke energije. Unatoč tim naporima, tamna tvar tek treba biti izravno otkrivena, što je čini jednim od najznačajnijih izazova u modernoj fizici.

Budućnost istraživanja tamne tvari


Potraga za razumijevanjem tamne tvari nastavlja poticati napredak u astrofizici i fizici čestica. Buduća promatranja i eksperimenti mogli bi otkriti prirodu tamne tvari, bacajući svjetlo na ovu kozmičku misteriju.

Kako tehnologija napreduje, nadamo se da ćemo izravno otkriti čestice tamne tvari ili pronaći nove dokaze koji bi mogli potvrditi ili osporiti naše trenutne teorije o sastavu svemira.

U biti, teorija tamne tvari naglašava našu potragu za razumijevanjem golemih, nevidljivih komponenti svemira. Njegova rezolucija ima potencijal revolucionirati naše razumijevanje svemira, od najmanjih čestica do najvećih struktura u svemiru.

Izvor: https://www.earth.com/news/dark-matter-does-not-exist-universe-27-billion-years-old-study/

Šta je to antimaterija?

Antimaterija
Godine 1928. britanski fizičar Paul Dirac napisao je jednadžbu koja je kombinirala kvantnu teoriju i specijalnu relativnost kako bi opisala ponašanje elektrona koji se kreće relativističkom brzinom. Jednadžba – koja je Diracu donijela Nobelovu nagradu 1933. – postavila je problem: baš kao što jednadžba

x^2 = 4

može imati dva moguća rješenja (x = 2 ili x = −2), tako Diracova jednadžba može imati dva rješenja, jedno za elektron s pozitivnom energijom i jedan za elektron s negativnom energijom. Ali klasična fizika (i zdrav razum) diktirali su da energija čestice uvijek mora biti pozitivan broj.
Dirac je protumačio jednadžbu tako da za svaku česticu postoji odgovarajuća antičestica, koja točno odgovara čestici, ali sa suprotnim nabojem. Na primjer, za elektron bi trebao postojati “antielektron”, ili “pozitron”, identičan u svakom pogledu, ali s pozitivnim električnim nabojem.

Dalji uvid je otvorio mogućnost postojanja cijelih galaksija i svemira napravljenih od antimaterije.
Ali kada materija i antimaterija dođu u kontakt, one se poništavaju – nestaju u bljesku energije. Veliki prasak je trebao stvoriti jednake količine materije i antimaterije. Pa zašto u svemiru ima daleko više materije nego antimaterije?
U CERN-u fizičari stvaraju antimateriju za proučavanje u eksperimentima. Početna točka je Antiproton Decelerator, koji usporava antiprotone kako bi fizičari mogli istražiti njihova svojstva.
#antimaterija
Zasluge: CERN

Teleskop Džejms Veb otkrio je “ekstremni” sjaj koji dolazi iz 90 odsto najranijih galaksija u svemiru.

Svemirski teleskop James Webb (JWST) otkrio je da su gotovo sve najranije galaksije u svemiru bile ispunjene blistavim plinovitim oblacima koji su svijetlili svjetlije od zvijezda u nastajanju u njima — i to bi moglo pomoći u rješavanju misterije koja prijeti razbijanjem kosmologije.

Formirajući se već 500 miliona godina nakon Velikog praska, neke rane galaksije su viđene kako sijaju tako jako da ne bi trebale postojati: sjaj njihove veličine trebao bi doći samo od masivnih galaksija sa onoliko zvijezda koliko i Mliječni put, ali galaksije su se formirale u djeliću vremena koje je naša galaksija trebala formirati.

Otkriće je pretilo da poremeti razumevanje formiranja galaksija, pa čak i standardni model kosmologije, koji kaže da se nekoliko miliona godina nakon Velikog praska (pre 13,8 milijardi godina) energija kondenzovala u materiju iz koje su se prve zvezde polako spajale. Ipak, kada je JWST došao online, vidio je previše zvijezda.

Sada su astronomi pronašli mogući odgovor: velika grupa galaksija starih 12 milijardi godina od kojih je gotovo 90% bilo upleteno u svijetli plin koji je — nakon što ih je zapalila svjetlost okolnih zvijezda — pokrenuo intenzivne rafale formiranja zvijezda dok se plin hladio. Novo istraživanje je prihvaćeno za objavljivanje u časopisu The Astrophysical Journal.

“Naš rad dokazuje da su interakcije sa susednim galaksijama odgovorne za neobičan sjaj ranih galaksija,” rekao je Anšu Gupta, astrofizičar sa Univerziteta Kurtin u Australiji. Eksplozija formiranja zvezda izazvana interakcijama takođe bi mogla da objasni masivniju prirodu ranih galaksija. 

Astronomi su otkrili sjajne gasne oblake u podacima prikupljenim u okviru JWST-ovog naprednog dubokog ekstragalaktičkog istraživanja, koje je koristilo tri instrumenta teleskopa za prikupljanje infracrvenih slika galaksija pre nego što su analizirali njihov spektar.

Posmatrajući frekvencije svetlosti koje su emitovale galaksije, istraživači su otkrili šiljke “ekstremnih emisijskih karakteristika” – jasan znak da gas hvata svetlost obližnjih zvezda pre nego što ga je emitovao.

“Gas ne može sam da emituje svetlost,” rekao je Gupta. “Ali mlade, masivne zvijezde emitiraju pravu vrstu zračenja da pobude plin — a rane galaksije imaju mnogo mladih zvijezda.”

Nakon poređenja ovog emisijskog spektra sa onima pronađenim u novijim galaksijama koje naseljavaju današnji univerzum, istraživači su otkrili da oko 1% ima slične osobine. Istraživači su rekli da će proučavanjem ovih kasnijih galaksija, koje je lakše izmeriti, steći važan uvid u ranije galaksije i početke hemije svemira.

“Hemijski elementi koji čine sve opipljivo na Zemlji i svemiru, osim vodonika i helijuma, nastali su u jezgrima udaljenih zvezda,” rekao je Gupta. Dakle, važno je razumeti uslove koji okružuju galaksije i zvezde u ranom univerzumu kako bismo bolje razumeli sopstveni svet danas.

U Visokom je otvorena prva poslijeratna astronomska opservatorija u BiH.

Opservatorija se nalazi na terasi shopping centra i hotela “Vema” i ima kupolu sa teleskopom.

Teleskop i oprema: Teleskop je nabavljen i montiran uz pomoć konsultanata iz AD Orion. Teleskop je reflektor američke firme MEADE sa prečnikom 35,5 cm i fokusnim rastojanjem od 284,5 cm. Teleskop je automatizovan i sadrži bazu od 145 000 nebeskih objekata.

Program i saradnja: Opservatorija je namijenjena za popularizaciju i edukaciju iz astronomije. AD Orion priprema program posjeta, predavanja i radionica za sve dobne skupine. Opservatorija simbolizira povratak ozbiljnije astronomije u našoj zemlji.

  • Izvor: adorion.ba

Entropija: Zašto se čini da život uvijek postaje komplikovaniji

Murphyjev zakon kaže: “Sve što može poći naopako, poći će naopako.”

Ova sažeta izjava upućuje na dosadnu sklonost života da stvara nevolje i otežava stvari. Čini se da problemi nastaju sami od sebe, dok rješenja uvijek zahtijevaju našu pažnju, energiju i trud. Čini se da nam život nikad ne ide samo od sebe. Ako ništa drugo, naši životi postaju složeniji i postupno padaju u nered, umjesto da ostanu jednostavni i strukturirani.

Zašto je to?

Murphyjev zakon je samo uobičajena izreka koju ljudi razbacuju u razgovoru, ali je povezan s jednom od velikih sila našeg univerzuma. Ova sila je toliko fundamentalna za način na koji naš svijet funkcionira da prožima gotovo svaki poduhvat kojim težimo. To pokreće mnoge probleme sa kojima se suočavamo i dovodi do nereda. To je jedina sila koja upravlja svačijim životom: Entropija.

Šta je Entropija i zašto je važna?
Šta je entropija? Evo jednostavnog načina da razmislite o tome:

Zamislite da uzmete kutiju dijelova slagalice i bacite ih na sto. U teoriji, moguće je da dijelovi savršeno sjednu na svoje mjesto i stvore gotovu slagalicu kada ih izbacite iz kutije. Ali u stvarnosti, to se nikada ne dešava.

Zašto?

Naprosto, jer su šanse ogromne protiv toga. Svaki komad bi morao pasti na pravo mjesto da bi se stvorila završena slagalica. Postoji samo jedno moguće stanje u kojem je svaki komad u redu, ali postoji skoro beskonačan broj stanja u kojima su dijelovi u neredu. Matematički govoreći, malo je vjerovatno da će se uredan ishod dogoditi nasumično.

Slično, ako sagradite dvorac od pijeska na plaži i vratite se nekoliko dana kasnije, više ga neće biti. Postoji samo jedna kombinacija čestica pijeska koja izgleda kao vaš pješčani dvorac. U međuvremenu, postoji gotovo beskonačan broj kombinacija koje ne izgledaju tako.

Opet, u teoriji, moguće je da vjetar i valovi pokreću pijesak okolo i stvaraju oblik vašeg pješčanog zamka. Ali u praksi se to nikada ne dešava. Šanse su astronomski veće da će se pijesak rasuti u nasumične gomile.

Ovi jednostavni primjeri prikazuju suštinu entropije. Entropija je mjera nereda. I uvijek ima mnogo više neurednih varijacija nego urednih.

Zašto je Entropija bitna za vaš život?


Evo ključne stvari o entropiji: ona se uvijek povećava tokom vremena.

Prirodna je tendencija stvari da gube red. Prepušten sam sebi, život će uvijek postati manje strukturiran. Peščani zamkovi se odnose. Korov prevladava vrtove. Drevne ruševine se ruše. Automobili počinju da rđaju. Ljudi postepeno stare. Sa dovoljno vremena, čak i planine erodiraju i njihove precizne ivice postaju zaobljene. Neizbežan trend je da stvari postaju manje organizovane.

Ovo je poznato kao Drugi zakon termodinamike. To je jedan od temeljnih koncepata hemije i jedan je od fundamentalnih zakona našeg univerzuma. Drugi zakon termodinamike kaže da se entropija zatvorenog sistema nikada neće smanjiti.

“Zakon da se entropija uvijek povećava ima, mislim, vrhovni položaj među zakonima prirode.” — Arthur Eddington


Veliki britanski naučnik Artur Edington je tvrdio: „Zakon da se entropija uvek povećava ima, mislim, vrhovni položaj među zakonima prirode. Ako vam neko ukaže da se vaša kućna teorija univerzuma ne slaže sa Maksvelovim jednačinama – utoliko gore po Maksvelove jednačine. Ako se otkrije da je to u suprotnosti sa zapažanjem – pa, ovi eksperimentalisti ponekad zabrljaju stvari. Ali ako se utvrdi da je vaša teorija protivna Drugom zakonu termodinamike, ne mogu vam dati nadu; nema ništa drugo nego srušiti se u najdubljem poniženju.”

Dugoročno gledano, ništa ne izmiče drugom zakonu termodinamike. Privlačenje entropije je nemilosrdno. Sve propada. Poremećaj se uvek povećava.

Bez napora, život teži da izgubi red


Prije nego što postanete depresivni, postoje dobre vijesti.

Možete se boriti protiv privlačenja entropije. Možete riješiti razbacanu zagonetku. Možete iščupati korov iz svog vrta. Možete očistiti neurednu sobu. Možete organizirati pojedince u kohezivni tim.

Ali budući da svemir prirodno klizi prema neredu, morate trošiti energiju da biste stvorili stabilnost, strukturu i jednostavnost.

Uspješne veze zahtijevaju brigu i pažnju. Uspješne kuće zahtijevaju čišćenje i održavanje. Uspješni timovi zahtijevaju komunikaciju i saradnju. Bez truda, stvari će propasti.

Ovaj uvid – da poremećaj ima prirodnu tendenciju da se vremenom povećava i da se toj tendenciji možemo suprotstaviti trošenjem energije – otkriva osnovnu svrhu života. Moramo uložiti napor da stvorimo korisne tipove poretka koji su dovoljno otporni da izdrže neumoljivu silu entropije.

„Krajnji cilj života, uma i ljudske težnje: raspoređivanje energije i informacija za borbu protiv plime entropije i stvaranje utočišta blagotvornog poretka.” —Steven Pinker


Održavanje organizacije u uslovima haosa nije lako. Prema riječima Yvon Chouinard-a, osnivača Patagonije, “Najteža stvar na svijetu je pojednostaviti svoj život jer vas sve vuče da budete sve složeniji.”

Entropija će se uvijek povećavati sama od sebe. Jedini način da stvari ponovo dovedu u red je dodavanje energije. Red zahteva trud.

Entropija u svakodnevnom životu
Entropija pomaže objasniti mnoge misterije i iskustva svakodnevnog života.

Na primjer:

Zašto je život izuzetan

Razmotrite ljudsko tijelo.

Kolekcija atoma koji čine vaše tijelo mogla bi biti raspoređena na gotovo beskonačan broj načina i gotovo svi oni ne vode ni do kakvog oblika života. Matematički govoreći, šanse su u velikoj mjeri protiv samog vašeg prisustva. Vi ste vrlo nevjerovatna kombinacija atoma. A ipak, tu ste. Zaista je izvanredno.

U univerzumu u kojem entropija vlada danom, prisustvo života sa takvom organizacijom, strukturom i stabilnošću je zapanjujuće.

Zašto je umjetnost lijepa

Entropija nudi dobro objašnjenje zašto su umjetnost i ljepota tako estetski ugodne. Umjetnici stvaraju formu reda i simetrije koju, vjerovatno, svemir nikada ne bi stvorio sam. To je tako rijetko u velikoj šemi mogućnosti. Broj lijepih kombinacija je daleko manji od broja ukupnih kombinacija. Slično, vidjeti simetrično lice je rijetko i lijepo kada postoji toliko mnogo načina da lice bude asimetrično.

Ljepota je rijetka i malo vjerovatna u svemiru poremećaja. I to nam daje dobar razlog da zaštitimo umjetnost. Treba da ga čuvamo i tretiramo kao nešto sveto.

Zašto je brak težak

Jedna od najpoznatijih uvodnih rečenica u književnosti dolazi iz Ane Karenjine Lava Tolstoja. On piše:

„Srećne porodice su sve slične; svaka nesretna porodica je nesretna na svoj način.”

Postoji mnogo načina na koji brak može propasti – finansijski stres, problemi sa roditeljstvom, lude tazbine, sukobi u osnovnim vrijednostima, nedostatak povjerenja, nevjera, itd. Nedostatak u bilo kojoj od ovih oblasti može uništiti porodicu.

Međutim, da biste bili sretni, potreban vam je određeni stepen uspjeha u svakom glavnom području. Dakle, sve sretne porodice su slične jer sve imaju sličnu strukturu. Poremećaj se može pojaviti na mnogo načina, ali red na samo nekoliko.

Zašto su optimalni životi dizajnirani, a ne otkriveni

Imate kombinaciju talenata, vještina i interesa koji su specifični za vas. Ali također živite u širem društvu i kulturi koji nisu dizajnirani s vašim specifičnim sposobnostima na umu. S obzirom na ono što znamo o entropiji, što mislite kolike su šanse da je okruženje u kojem odrastate također optimalno okruženje za vaše talente?

Malo je vjerovatno da će vam život predstaviti situaciju koja savršeno odgovara vašim snagama. Od svih mogućih scenarija s kojima se možete susresti, mnogo je vjerovatnije da ćete naići na onaj koji ne odgovara vašim talentima.

Evolucijski biolozi koriste termin koji se naziva “uslovi neusklađenosti” kako bi opisali kada organizam nije dobro prikladan za stanje s kojim se suočava. Imamo uobičajene fraze za neusklađenost uslova: „kao riba iz vode“ ili „donesi nož u pucnjavu“. Očigledno, kada ste u neusklađenom stanju, teže je uspjeti, biti koristan i pobijediti.

Vjerovatno ćete se suočiti sa neusklađenim uslovima u svom životu. U najmanju ruku, život neće biti optimalan – možda niste odrasli u optimalnoj kulturi za svoje interese, možda ste bili izloženi pogrešnoj temi ili sportu, možda ste rođeni u pogrešno vrijeme u istoriji. Mnogo je vjerovatnije da živite u neusklađenom stanju nego u dobro usklađenom.

Znajući to, morate uzeti na sebe da osmislite svoj idealan životni stil. Morate pretvoriti uslov neusklađenosti u dobro uparen.

Optimalni životi su dizajnirani, a ne otkriveni.

Murphyjev zakon primijenjen na univerzum


Na kraju, vratimo se Marfijevom zakonu: „Sve što može poći naopako, poći će po zlu“.

Entropija pruža dobro objašnjenje zašto se Marfijev zakon tako često pojavljuje u životu. Postoji više načina na koji stvari mogu krenuti naopako nego kako treba. Životne poteškoće ne nastaju zato što su planete pogrešno postavljene ili zato što se neka kosmička sila urotila protiv vas. To je jednostavno entropija na djelu. Kao što je jedan naučnik rekao,

“Entropija je nešto poput Marfijevog zakona primenjenog na ceo univerzum.”

Niko nije kriv što život ima problema. To je jednostavno zakon vjerovatnoće. Mnogo je neuređenih stanja, a malo uređenih. S obzirom na šanse protiv nas, ono što je izvanredno nije da život ima problema, već da ih uopće možemo riješiti.

Izvor: https://jamesclear.com/entropy

Misteriozni objekat u obliku upitnika snimljen u dubokom svemiru od strane JWST-a?

Svemirski teleskop James Webb (JWST) dao je mnoge odgovore o poreklu svemira otkako je lansiran u decembru 2021. Takođe stalno postavlja nova pitanja. Ono što je zbunilo astronome širom svijeta sa nedavne slike je objekat koji se nalazi odmah ispod zvijezda nalik na džinovski znak pitanja u svemiru.

Može li biti da nam univerzum postavlja pitanje?

  1. juna, na primjer, stručnjaci iz Evropske svemirske agencije objavili su novu sliku koju je snimio JWST nudeći detaljan pogled na dvije mlade zvijezde koje se aktivno formiraju smještene u sazviježđu Vela – oko 1.470 svjetlosnih godina udaljene od Zemlje – i poznate kao Herbig- Haro 46/47.

Intrigantni uzorci u svemiru
“Otkad su astronomi okrenuli svoje oči ka zvijezdama, bili smo u iskušenju da uočimo obrasce u onome što nalazimo gore. Mnoge magline, koje su oblaci međuzvjezdanog plina, i galaksije su nazvane po svojim očiglednim oblicima, iako je većinu ovih obrazaca koje su primijetili rani astronomi postalo prilično teže vidjeti kako su se teleskopi poboljšali i detalji u svakom objektu postali jasniji.” rekao je Gregory Brown, astronom Kraljevske opservatorije Greenwich.

Ono što se nekada smatralo slabom mrljom grubog oblika božićnog drvca ili vještičje glave sada se češće doživljava kao složeni oblaci i niti plina i prašine. Možda ćemo jednog dana moći da posmatramo ovu galaksiju teleskopima takvog kvaliteta da će čak i ovaj relativno jednostavan oblik biti izgubljen u novim detaljima koje možemo da vidimo.”

“Žao mi je što moram reći ljudima da to vjerovatno nije poruka čovječanstvu – ali pokazuje nevjerovatnu sposobnost ovog teleskopa da istraži naš svemir kao nikada prije,” rekao je Stephen Wilkins, astronom sa Univerziteta u Sussexu.

Proučavanje upitnika u svemiru


Iako je još uvek nejasno šta bi ovaj astronomski objekat mogao da bude, njegova boja i oblik već nude neke nagoveštaje. Prema predstavnicima Instituta za nauku svemirskog teleskopa (STScI) u Baltimoru (koji upravlja JWST-ovim radom), to je verovatno udaljena galaksija, ili potencijalno interaktivne galaksije, sa njihovim interakcijama koje uzrokuju iskrivljeni oblik znaka pitanja.

Slično objašnjenje nedavno je iznio Matt Caplan, docent fizike na Državnom univerzitetu Illinois. Po njegovom mišljenju, dvije različite karakteristike mogle bi biti spajanje galaksija, pri čemu je gornja strana upitnika dio veće galaksije.

S obzirom na boju nekih drugih pozadinskih galaksija, ovo se ne čini kao najgore objašnjenje. Uprkos tome koliko su haotična spajanja, dvostruki režnjevi predmeti sa zakrivljenim repovima koji se protežu od njih su veoma tipični,” rekao je on. 

Webb nam pokazuje novi dio našeg svijeta
Iako je Kaplan priznao da bi moglo biti mnogo drugih objašnjenja o tome šta ovaj kosmički objekat predstavlja, najverovatnije nije zvezda, zbog nedostatka osam krakih šiljaka za prelamanje koji kao da izlaze spolja od zvezda na JWST-ovim slikama kao rezultat svojih ogledala.

Ovo je možda prvi put da vidimo ovaj objekat. Potrebno je dodatno praćenje kako bi se sa sigurnošću utvrdilo šta je to. Webb nam pokazuje mnogo novih, udaljenih galaksija – tako da ima puno nove nauke koja treba da se uradi!,” zaključili su predstavnici STScI.

Galaktička spajanja
Spajanje galaksija je čest događaj u svemiru, često rezultirajući većim, eliptičnim galaksijama. Ovaj proces može potrajati od nekoliko stotina miliona do više od milijardu godina da se završi. 

Kako se dve galaksije približavaju, njihove međusobne gravitacione sile stupaju u interakciju, uzrokujući da se zvezde, gas i prašina mešaju i interaguju na složene načine. To može izazvati intenzivno formiranje zvijezda, a ako obje galaksije imaju supermasivnu crnu rupu u svojim centrima, ove crne rupe se na kraju mogu spojiti.

Izvor: https://www.earth.com/news/jwst-spots-a-mysterious-question-mark-in-deep-space/?fbclid=IwAR1B2U8ZxXFIRog5QqQDdIF76k_6G_ZGVtz2Q8Jzmz7grusxmvPu3i86AY4

Svemir je star 26,7 milijardi godina?

Novo istraživanje tvrdi da je svemir mnogo stariji nego što se mislilo. Prema članku koji je objavljen u uglednom časopisu Monthly Notices of the Royal Astronomical Society prošlog tjedna, svemir ima 26,7 milijardi godina, a ne 13,7 milijardi godina kako je ranije izračunato.

Glavni autor studije, prof. Rajendra Gupta, rekao je da je njegov novi model produžio vrijeme nastanka galaksije za nekoliko milijardi godina. On je koristio drugačiji model od onog koji se obično koristi u kozmologiji, zvanog Lambda-CDM, koji je napravljen prije dvije godine.

Za procjenu starosti svemira astrofizičari su mjerili vrijeme koje je prošlo od Velikog praska i tražili najstarije zvijezde i galaksije koje su vidljive na velikim udaljenostima. Međutim, otkrili su da postoje zvijezde i galaksije koje su starije od procijenjenog doba svemira, što je proturječno. Ova otkrića su omogućena zahvaljujući svemirskom teleskopu James Webb.

U svojoj studiji istraživači su koristili hibridne modele koji kombiniraju ideju o umornoj svjetlosti u proširenom svemiru, koju je prvi predložio švicarski astronom Fritz Zwicky u 20. stoljeću. Ova ideja kaže da je svjetlost koja dolazi iz drugih galaksija posljedica gubitka energije fotona na kozmičkim udaljenostima. Gupta je otkrio da je crveni pomak hibridni fenomen. Nadalje, Zwicky je također uveo koncept spregnutih konstanti, koje upravljaju interakcijom između čestica i njihovom evolucijom u obliku ranih galaksija koje je teleskop promatrao na velikim crvenim pomacima i koji se mogu produžiti na nekoliko milijardi godina, za razliku od nekoliko stotina miliona godina.

U ranom Svemiru vrijeme teklo sporije nego što sada teče

Astronomi su posmatrali efekat dilatacije vremena u dalekim dijelovima svemira, što je prvi put da je čudan efekat, koji je Albert Ajnštajn predvidio prije više od 100 godina, primijećen u ranom kosmosu.

Događaji su se dešavali pet puta sporije kada je univerzum bio star tek milijardu godina – deseti dio njegove trenutne starosti – zbog načina na koji širenje kosmosa “rasteže” protok vremena.

– Vraćajući se u vrijeme kada je univerzum bio star tek milijardu godina, vidimo da je vrijeme teklo pet puta sporije. Da ste bili prisutni, u mladom kosmosu, jedna sekunda bi se činila kao jedna sekunda, ali iz naše perspektive, više od 12 milijardi godina kasnije, to rano vrijeme čini se da se vuče – objašnjava Džerald Luis, profesor astrofizike sa Univerziteta u Sidneju.

Ajnštajn je 1915. godine rekao da se stvari u svemiru dešavaju sporije kad su dalje od nas. To je zato što se svemir širi i povlači svjetlost i vrijeme sa sobom.

Kad gledamo zvijezde kako eksplodiraju, vidimo da su one daleko i da se njihove eksplozije odvijaju polako. Ali kad gledamo kvazare, koje su još dalje i sjajnije, nismo mogli da vidimo taj efekat.

Dva naučnika iz Novog Zelanda su proučavali 190 kvazara koje su drugi gledali u zadnjih 20 godina. Oni su otkrili da se kvazari stvarno kreću sporije kad su dalje od nas, baš kao što je Ajnštajn rekao.

Jedan australijski naučnik koji je dobio Nobelovu nagradu za fiziku kaže da je to dobar dokaz za Ajnštajnovu teoriju i da nema razloga da sumnjamo u nju.

Izvor: https://www.avaz.ba/sci-tech/nauka/841472/dogadjaji-u-najranijim-periodima-kosmosa-odigravali-su-se-pet-puta-sporije-nego-danas

Može li Svemir misliti?

Fizičarka Sabine Hossenfelder došla je do zaključka da svemir može misliti sam za sebe. Mi smo dio toga. U graničnim područjima fizike mnogo toga mora ostati nagađanje, kao što je teorija velikog praska. Međutim, postoje i drugačija mišljenja i teorije o ovoj temi.

Nema znanstvenih dokaza da svemir može razmišljati. Međutim, neki su znanstvenici istražili tu ideju. Na primjer, Sabine Hossenfelder, znanstvena suradnica na Frankfurtskom institutu za napredne studije, Njemačka, pisala je o strukturnoj sličnosti između ljudskog mozga i svemira. Ona primjećuje da raspodjela materije u svemiru pomalo nalikuje na “connectome”, mrežu živčanih veza u ljudskom mozgu.

No, ona također ističe da postoje važne razlike između svemira i ljudskog mozga. Na primjer, svemir se širi i njegovo širenje se ubrzava. Da su klasteri galaksija neuroni svemira, tada bi letjeli jedan od drugoga sve većom brzinom.

Zašto postoji više materije nego antimaterije u Svemiru?

Razlog zašto u Svemiru postoji više materije nego antimaterije nije u potpunosti shvaćen. Međutim, postoje neke teorije koje objašnjavaju ovu neravnotežu.Jedna od tih teorija je da je u ranom Svemiru, kada se pojavila prva materija, došlo do naglog procesa asimetrične proizvodnje materije i antimaterije, što je rezultiralo više materije nego antimaterije.Druga teorija povezuje ovu neravnotežu s osobinama fizičkih zakona, sugerirajući da se mala razlika u zakonima kojima se upravlja materijom i antimaterijom proteže tokom vremena i dovodi do neravnoteže.Unatoč ovim teorijama, još uvijek nije potpuno jasno zašto postoji više materije nego antimaterije u Svemiru. Ovaj problem i dalje predstavlja izazov za istraživanje i razumijevanje svemira.

Izvor: chat gpt