Category Archives: Astrobiologija

Može li Svemir misliti?

Fizičarka Sabine Hossenfelder došla je do zaključka da svemir može misliti sam za sebe. Mi smo dio toga. U graničnim područjima fizike mnogo toga mora ostati nagađanje, kao što je teorija velikog praska. Međutim, postoje i drugačija mišljenja i teorije o ovoj temi.

Nema znanstvenih dokaza da svemir može razmišljati. Međutim, neki su znanstvenici istražili tu ideju. Na primjer, Sabine Hossenfelder, znanstvena suradnica na Frankfurtskom institutu za napredne studije, Njemačka, pisala je o strukturnoj sličnosti između ljudskog mozga i svemira. Ona primjećuje da raspodjela materije u svemiru pomalo nalikuje na “connectome”, mrežu živčanih veza u ljudskom mozgu.

No, ona također ističe da postoje važne razlike između svemira i ljudskog mozga. Na primjer, svemir se širi i njegovo širenje se ubrzava. Da su klasteri galaksija neuroni svemira, tada bi letjeli jedan od drugoga sve većom brzinom.

Kada su se prvi ljudi pojavili na planeti Zemlji?

Kada je naša planeta bila stara četiri milijarde godina, uspon velikih biljaka i životinja tek je počeo. Složenost je eksplodirala otprilike u to vrijeme, jer je kombinacija višećelijske, seksualne reprodukcije i drugih genetskih napretka dovela do kambrijske eksplozije. Mnoge evolucijske promjene dogodile su se u narednih 500 miliona godina, s izumiranjem i pritiscima selekcije koji su utrli put za nastanak i razvoj novih oblika života.

Prije 65 miliona godina, katastrofalni udar asteroida zbrisao je ne samo dinosauruse, već i gotovo svaku životinju tešku preko 25 kg (osim kožnih morskih kornjača i nekih krokodila). Ovo je bilo posljednje veliko masovno izumiranje Zemlje i ostavilo je veliki broj neispunjenih niša za sobom. Sisavci su postali istaknuti nakon toga, a prvi ljudi su nastali prije manje od milion godina. Evo naše priče.

Prije 65 miliona godina, masivni asteroid prečnika između 5 i 10 kilometara udario je u našu planetu. Podigao je sloj prašine koji se taložio po cijelom svijetu, sloj koji se danas može naći u sedimentnim stijenama naše planete. Na starijoj strani tog sloja nalaze se fosili poput dinosaura, pterosaura, ihtiosaura i plesiosaura. Džinovski gmizavci, amoniti i velike klase biljaka i životinja postojale su prije tog događaja, zajedno s malim pticama koje lete i sićušnim sisavcima koji žive na kopnu.

Nakon tog događaja, sisari su preživjeli. Bez većih grabežljivaca koji bi ih zaustavili, rasli su, diverzificirali se i doživjeli populacijsku eksploziju. Primati, glodari, lagomorfi i drugi oblici sisara, uključujući placentne sisare, tobolčare, pa čak i sisare koji leže jaja, su brojni na početku kenezojske epohe.

Gotovo odmah, primati su počeli još više da se diverzificiraju. Prije 63 miliona godina — samo 2 miliona godina nakon smrti dinosaurusa — podijelili su se u dvije grupe.

Primati sa suhim nosom, formalno poznati kao haplorini, koji su se razvili u moderne majmune i stare majmune.
Primati s vlažnim nosom, poznati kao strepsirrine, koji su se razvili u moderne lemure i aye-ay.

Prije 58 miliona godina dogodila se još jedna velika promjena: haplorini su doživjeli zanimljiv genetski rascjep, jer se prva nova i jedinstvena evolucijska grana razlikovala od ostalih primata suhog nosa: tarsier. Sa svojim ogromnim očima, bio je jedinstveno dobro prilagođen da vidi noću.

Niša koju je sada zauzela bila je dovoljno različita od preostalih grupa naših predaka da su od ovog trenutka dalje evoluirali drugačije od ostalih svojih rođaka. Ova vrsta evolucijskog cijepanja događa se s vremena na vrijeme i nije jedinstvena za primate.

Iako obično ne razmišljamo mnogo o našim dalekim rođacima i kako se oni razvijaju nakon što se odvoje od nas, nisu samo haplorini poput nas (i naših direktnih predaka) prošli kroz zanimljive faze evolucije. U proteklih 65 miliona godina — baš kao što je bilo prije tog vremena — razni sisari, ptice, biljke i drugi živi organizmi evoluirali su zajedno. Evolucija je vođena promjenama okoliša, a to uključuje i sve cvjetne i faunističke promjene koje se dešavaju na našoj planeti.

Prije 55 miliona godina, nagli porast stakleničkih plinova doveo je do brzog porasta globalne prosječne temperature, izbrisavši mnoge životinje i biljke u dubokom okeanu. Ova transformacija ostavila je mnoge velike, nepopunjene niše u okeanu, utirući put za razvoj kitova (velikih okeanskih sisara).

Prije 50 miliona godina, neki od sisavaca s parnim prstima počeli su evoluirati u morska bića. Artiodaktili su možda svi evoluirali od jednog zajedničkog pretka ili su evoluirali nezavisno. Životinje kao što je Indohyus, koji datira prije 48 miliona godina, možda su dovele do protocetida: sisara u plitkim vodama koji su se vratili na kopno da bi rodili.

Otprilike u to vrijeme, prije 47 miliona godina, postojao je primat Darwinius masillae, jer fosil Ida, sačuvan iz tog vremena, pruža spektakularan primjer. Iako je ovo prvobitno reklamirano kao poslovična „karika koja nedostaje“ u ljudskoj evoluciji, Ida nije haplorin kao mi, već strepsirena: primat vlažnog nosa.

Ali još 7 miliona godina kasnije — prije 40 miliona godina — dogodio se važan razvoj među primatima suhog nosa: majmuni Novog svijeta su se razgranali. Ljudi i naši preci majmuna potječu od majmuna Starog svijeta; Majmuni Novog svijeta su prvi majmuni (ili viši primati) koji su evolucijski odstupili od naše loze. Oni bi kolonizirali veći dio Južne Amerike, gdje ih i danas ima u izobilju.

Majmuni Starog svijeta nastavljaju napredovati i uspješno zauzimaju svoje niše, dok se diverzificiraju u veličini tijela i fizičkim karakteristikama. Prije 25 miliona godina evoluirali su prvi majmuni, odvojivši se od preostalih majmuna Starog svijeta u to vrijeme. Majmuni — definirani potpunim nedostatkom repa bilo koje vrste — bi potom dali povoda mnogim bliskim srodnicima ljudi koji prežive danas: i manjim i velikim majmunima.

Najraniji majmun koji se odvojio od majmuna Starog svijeta bio je Gibon, manji majmun koji se prvi put pojavio prije 18 miliona godina.

Prije negdje između 14 i 16 miliona godina pojavili su se prvi veliki čovjekoliki majmuni, a orangutani su se razgranali prije 14 miliona godina. Orangutani su se nakon toga proširili u južnu Aziju, dok su ostali veliki majmuni ostali u Africi. Najveći primat ikada, Gigantopithecus, prvi je put nastao prije nekih 9 miliona godina, a izumro je tek prije nekoliko stotina hiljada godina.

Prije 7 miliona godina, gorile su se odvojile od drugih velikih majmuna; oni ostaju najveći od svih preživjelih primata.

Veliki majmuni su se prije 6 miliona godina odvojili u dva smjera, pri čemu je jedan smjer doveo do ljudskih predaka, a drugi ogranak doveo do čimpanza i bonoba. Grana šimpanza/bonobo ostaje ujedinjena još 4 miliona godina, s našim najbližim preživjelim rođacima — čimpanzama i bonoboima — koji se razilaze jedni od drugih prije samo 2 miliona godina.

Ali na tragu naših direktnih predaka, razvoj je bio brz i dubok. Prije 5,6 miliona godina nastao je prvi istinski dvonožni majmun, Ardipithecus. Iako je to kontroverzna tvrdnja, kosti šake u Ardipithecusu pokazuju dokaze da je to prijelazni fosil između ranijih velikih majmuna i kasnijih australopiteka.

Prije otprilike 4 miliona godina evoluirao je prvi Australopithecus: prvi članovi podplemena Hominina (taksonomska klasifikacija specifičnija od porodice, ali manje specifična od roda). Ubrzo nakon toga, pojavljuju se prvi dokazi o korištenju kamenog oruđa: trenutno prije 3,4 do 3,7 miliona godina.

Ključni evolucijski korak dogodio se prije nešto više od 2 miliona godina, kada su se naši preci hominida suočili s nestašicom hrane. Jedan evolucijski uspješan pristup bio je razvoj jačih čeljusti, što nam je dalo mogućnost da jedemo hranu (poput orašastih plodova) koja je inače bila nedostupna. Ali drugi pristup je također bio uspješan: razviti slabije čeljusti i veći mozak, što nam je omogućilo pristup hrani.

Dok su obje grupe opstale neko vrijeme, grupa sa većim mozgom bila je prilagodljivija promjenama i nastavile su preživljavati. Ovo je evolucijski put za koji mislimo da je doveo do razvoja roda Homo, koji je prvi nastao prije oko 2,5 miliona godina. Homo habilis, kolokvijalno poznat kao “ručni čovjek”, imao je veći mozak od svojih kolega Australopithecusa i pokazao je daleko rasprostranjeniju upotrebu alata.

Prije otprilike 1,9 miliona godina evoluirao je Homo erectus. Ovaj ljudski predak ne samo da je hodao potpuno uspravno, već je imao mnogo veći mozak od Homo habilisa: u prosjeku gotovo dvostruko veći. Homo erectus je postao prvi direktni ljudski predak koji je napustio Afriku i prvi koji je pokazao dokaze o korištenju vatre. Homo habilis je vjerovatno bio doveden do izumiranja prije više od milion godina, kao i posljednji Australopithecus.

Širom svijeta pojavili su se novi primjeri roda Homo, uključujući Homo antecessor u Evropi (koji može biti evoluirani habilis ili erectus, ili rani oblik heidelbergensis) prije oko 1,2 miliona godina, a zatim Homo heidelbergensis prije nekih 600.000 godina. Prije otprilike 700.000 godina, pojavljuju se najraniji dokazi o kuhanju; prije oko 500.000 godina pojavljuju se prvi dokazi o odjeći.

Prije otprilike 300.000 godina, prvi Homo sapiens — anatomski moderni ljudi — nastali su zajedno s našim drugim rođacima hominida. Nepoznato je da li smo potekli direktno od Homo erectusa, heidelbergensisa ili prethodnika, iako su neandertalci, koji su došli nešto kasnije, prije 240.000 godina, sasvim sigurno došli od Homo heidelbergensisa. Smatra se da je moderni govor nastao skoro čim se pojavio Homo sapiens.

Bilo je potrebno 13,8 milijardi godina kosmičke istorije da stignu prva ljudska bića, a mi smo to učinili relativno nedavno: prije samo 300.000 godina. U 99,998% vremena koje je prošlo od Velikog praska uopšte nije bilo ljudskih bića; cijela naša vrsta postoji samo za posljednjih 0,002% svemira. Ipak, za to kratko vrijeme uspjeli smo odgonetnuti cijelu kosmičku priču koja je dovela do našeg postojanja. Na sreću, priča se neće završiti kod nas, jer se još piše.

Izvor: https://bigthink.com/starts-with-a-bang/first-humans-on-earth/

Zapanjujuće svemirske fotografije James Web teleskopa otkrivaju ‘strukture za koje ni ne znamo šta su’

NASA je otkrila 5 novih nevjerovatnih fotografija sa svemirskog teleskopa James Webb, uključujući zvijezde koje nikada nismo vidjeli i “strukture za koje, iskreno, ne znamo ni šta su”.

NASA je u utorak otkrila pet zapanjujućih slika sa svemirskog teleskopa James Webb—najmoćnijeg teleskopa ikada lansiranog u svemir, trenutno udaljen milion kilometara.

JWST je najnoviji i najbolji način čovječanstva da se pogleda duboko u kosmos, sve do perioda neposredno nakon Velikog praska. Teleskop je 100 puta moćniji od Hubblea i sposoban je uhvatiti veće infracrvene valne dužine, što će mu omogućiti da vidi galaksije koje su udaljenije ili sa velikim crvenim pomakom. Svemir je radoznao jer gledanje dalje u daljinu znači i da gledamo u prošlost, pa tako u potrazi za najstarijim zvijezdama i galaksijama, JWST efektivno gleda na početak vremena i prostora.

“Ovo je naša vremenska mašina,” rekao je dr. John Mather, viši naučnik projekta za Webb, tokom NASA-inog emitovanja u utorak. Naravno, Web će se koristiti i za stvaranje više uvida o objektima koji su nam bliži, a ta sposobnost je bila pun prikaz tokom prve velike slike teleskopa.

Prva slika: Duboko polje

Svjetlost zvijezda i galaksija na ovoj slici dolazi prije više od 13 milijardi godina – Veliki prasak se dogodio prije 13,8 milijardi godina, što znači da ova slika prikazuje trenutak nedugo nakon svitanja vremena. Gravitacija klastera iskrivljuje ono što je iza njih, efekat koji se zove “socivanje”, tako da neki objekti izgledaju zamrljano, jer se uvećavaju. Uvećajte ga da otkrijete divlje detalje.

Druga slika: Egzoplaneta

Ovo je “indirektna” slika; vizuelne slike iz svemira se često rekonstruišu iz svetlosnih podataka, tako da je ovo nekako sirovi set. Iako nije tako vizuelno privlačan kao duboko polje, sadrži gomilu informacija za naučnike. Ovo je spektar egzoplanete WASP-96 b, gasnog giganta koji se nalazi 1.120 svjetlosnih godina od Zemlje. Neravnine i pokreti ukazuju na vodenu paru u atmosferi. U budućnosti će biti mnogo više ovakvih podataka sa drugih planeta i asteroida.

Treća slika: Smrt zvijezde

Ovo je izgled, i dva-fer za podizanje. To je vrlo detaljna bliska infracrvena slika magline zvane Južni prsten, koju je izazvala umiruća zvijezda, udaljena 2.500 svjetlosnih godina. “Pjenasti” prsten oko magline uzrokovan je molekularnim vodonikom koji nastaje masivnom eksplozijom. “Zraci” su zapravo rupe u unutrašnjoj maglini koje omogućavaju svjetlosti zvijezde da sija. U središtu magline su dvije zvijezde – naučnici su znali da je Južni prsten binarni zvjezdani sistem, ali sada ih možemo jasno vidjeti.

Četvrta slika: Galaksije

Ovo je slika Stephanovog kvinteta, koji je bliska grupa galaksija koju je prvi otkrio Edouard Stephan 1877. godine. Na fotografiji ih je pet, ali to je malo vizuelni trik. Jedna od galaksija je udaljena oko 40 miliona svjetlosnih godina od Zemlje, ali ostale četiri su istinska kompaktna grupa, a sve one postoje između 210 miliona i 340 miliona svjetlosnih godina od nas. U određenom smislu, to je fotografija koja nas vodi iz obližnjeg, modernog univerzuma, pa sve do drevnog svemira.

Peta slika: Rađanje zvijezde

Ovo je slika “zvjezdanog rasadnika”, regije u kojoj se rađaju nove zvijezde, i prikazuje zvijezde bebe koje su ranije bile skrivene od našeg pogleda. Fokus je na maglini Carina, koja je područje za formiranje zvijezda upravo ovdje u Mliječnom putu. Uprkos tome, Webbova slika otkriva stotine novih zvijezda i kosmičke “strukture za koje, iskreno, ne znamo ni šta su”, kaže Amber Straughn, zamjenica projektnog naučnika za JWST, koja je predstavila fotografiju.

Izvor: https://www.vice.com/en/article/qjk8np/mind-blowing-james-webb-space-photos-reveal-structures-that-we-dont-even-know-what-they-are

Hoće li krionično smrznuta tijela ikada biti vraćena u život?

Krioničari se nadaju da će ih moderna tehnologija jednog dana vratiti iz mrtvih. Ali koliko je realan drugi život nakon dubokog zamrzavanja?

Kaže se da je jedna od stvari koja nas čini ljudima naša svijest o vlastitoj smrtnosti, i skoro dokle god znamo da ćemo jednog dana umrijeti, pitali smo se o mogućnosti da se ponovo probudimo. Priče o uskrsnuću i besmrtnosti nalaze se u nebrojenim religijama i mitovima, a posljednjih godina mnoge od ovih priča su se temeljile na ideji krioničkog očuvanja: zamrzavanje tijela i zatim reanimiranje u budućnosti. Ako je upalilo za Hana Soloa, Kapetana Ameriku i Fraja iz Futurame, zašto ne bi uspjelo i za nas?

“[Za] većinu krioničara, postoje dvije stvari koje ćete pronaći. Mi smo ljubitelji naučne fantastike, očigledno. Takođe smo optimisti,” kaže Dennis Kowalski, predsjednik Instituta za krioniku, neprofitne organizacije sa sjedištem u Michiganu i jedne od nekolicine kompanija širom svijeta koje nude svoju liniju usluga.

Taj optimizam je važan, jer krionično očuvanje i reanimacija „danas 100 posto nije moguće“, kaže Kowalski. Ali, kaže on, „mi trenutno nismo u zenitu svog znanja i sigurno imamo još toga da naučimo i otkrijemo u budućnosti.” Kowalski, bivši bolničar, navodi moderne intervencije spašavanja života poput defibrilacije srca i CPR-a kao primjere kako se nauka može drastično promijeniti – tokom većeg dijela ljudske povijesti ljudi su se općenito slagali da ne postoji način da se spasi neko čije je srce stalo. „A sada je to prilično prokleta rutina“, kaže on.

Na osnovu te premise – da će nauka jednog dana pronaći rješenja za biološka oštećenja koja su nepopravljiva prema današnjim standardima – cilj krionike je održati tijela u stabilnom, očuvanom stanju dok ne stigne potrebna medicinska tehnologija. Čak i za njegove najodlučnije pristalice, krionika nije garancija; Kowalski to opisuje kao „vožnju hitnom pomoći u buduću bolnicu koja može, ali ne mora postojati“. Ali on na ovo polje gleda kao na neku Pascalovu opkladu – mi ćemo definitivno umrijeti, pa ako postoji čak i vanjska šansa da produžimo život kroz krioniku, nema se šta za izgubiti i ima potencijalno novi život da se dobije.

Kako funkcioniše krionički proces?


Kada se neko ko je napravio aranžmane da se njihovi ostaci krionski sačuvaju proglasi mrtvim, medicinski tim hladi tijelo ledenom vodom i održava tjelesna tkiva oksigeniranim pomoću CPR-a i maski za kisik. Ledeno hladno tijelo se stavlja u hermetički zatvorenu posudu i odvozi u postrojenje za krioniku. (Napomena o nomenklaturi – zamrzavanje leša je krionika, a ne kriogenika. Kriogenika je nauka i inženjering superniskih temperatura.)

U ustanovi za krioniku, tim stavlja tijelo na mašinu sličnu premosnici srce-pluća, koja cirkuliše krv i održava oksigenaciju. Oni pumpaju otopinu za vitrifikaciju koja djeluje kao antifriz kako bi spriječila da se tjelesna tkiva pretvore u kristale leda, u nadi da će minimizirati strukturna oštećenja. Zatim polako hlade tijelo na -195 C u komori s parom tečnog azota. Kada se dovoljno ohladi, tijelo se prenosi u rezervoar s tečnim azotom nalik termosici, gdje će ostati u doglednoj budućnosti. Naknade za pokrovitelje (oko 28.000 dolara po osobi) održavaju fondove instituta kako bi organizacija trajno radila.

Tijela će čekati u ovim rezervoarima dok ih medicinska tehnologija (nadamo se) ne oživi. Kowalski kaže da postoje tri izazova za ovu buduću tehnologiju koja treba savladati: morat će popraviti štetu nastalu smrzavanjem, izliječiti bilo koju bolest koja je prvobitno ubila subjekta i preokrenuti proces starenja tako da subjekt ima mlado, zdravo tijelo u kojem može uživati u njihovom drugom krugu. Niko ne zna kako bi ta tehnologija mogla izgledati; Kowalskijeva najbolja pretpostavka je inženjering tkiva i molekularna nanotehnologija koja će moći popraviti i zamijeniti oštećena tkiva.

Kowalski i njegovi kolege zagovornici krionike prepoznaju da je to težak zadatak. Ali ako većinu kriobiologa – naučnika koji proučavaju efekte smrzavanja na živa tkiva za postupke kao što su vantelesna oplodnja, terapija matičnim ćelijama i transplantacija organa – pitate o krionici, oni će samo odmahnuti glavom.

Šta bi moglo poći po zlu?


„Apsolutno ne postoji trenutni način, niti jedan dokazan naučni način, da se cijeli čovjek zamrzne na tu temperaturu, a da se potpuno ne uništi – a mislim i obliterira – tkivo“, kaže Shannon Tessier, kriobiolog sa Univerziteta Harvard i Opšte bolnice Massachusetts. Kada naučnici pokušaju da zamrznu uzorak živog ljudskog tkiva, poput kriške jetre, „tkivo je potpuno uništeno, ćelijska membrana je potpuno uništena. Dakle, zapravo nema dokaza da išta čuvate, a to je zato što nauka jednostavno još nije tu.”

Postoje životinje koje mogu preživjeti smrzavanje i odmrzavanje, poput kanadskih drvenih žaba, ali ovi organizmi su evoluirali posebno da podnose pritiske niskih temperatura na način na koji naša tijela jednostavno nisu. Tessier kaže da je teško zamisliti kako bi naša tkiva uopće mogla izdržati proces ponovnog zagrijavanja, čak i uz korist nekoliko stoljeća naučnog napretka. “Napravili smo eksperiment u laboratoriji prije nekoliko godina. Pokušali smo ostaknuti svinjsko srce, cijelo svinjsko srce. I, naravno, trenutno ne postoji tehnologija koja bi dovoljno brzo zagrijala srce i, doslovno, cijelo srce je puklo na pola.”

Sposobnost naših tkiva da fizički izdrže smrzavanje i odmrzavanje je samo početak, kaže John Baust, kriobiolog sa Univerziteta Binghamton, SUNY. Kada se naša tkiva ohlade, dio koji se smrzava je uglavnom čista voda – ćelije, soli i organski materijali koji čine naše tekućine su isključeni. Ćelije lijevo iza su podvrgnute ozbiljnom molekularnom stresu. „Postoje genetske promjene koje se dešavaju“, kaže Baust, „koje ćeliji govore: ‘Umri’.“ Ove upute za ćelijsku smrt, koje se nazivaju apoptoza, počinju mnogo prije nego što se dostignu niske temperature.

„Za one od nas koji rade u oblasti zamrzavanja bioloških materijala — ćelija sisara, tkiva, probali smo organe i tako dalje — postoje samo nepremostivi problemi“, kaže Baust.

Krioničari poput Kowalskog dobro su svjesni ovih kritika. On tvrdi da iako su ovi problemi za nas danas nepremostivi, oni bi mogli biti rješivi u budućnosti. To je tačka koju je definitivno nemoguće isključiti – gotovo kao da se definitivno dokaže da ne postoji takva stvar kao što su jednorozi. „Mislim da niko zaista ne može poreći šta bi budućnost mogla da nosi“, kaže Baust. “Nemam sve odgovore. Ali mislim da je skepticizam vrlo razuman.”

‘Ništa za izgubiti’


Izvan argumenata o tome šta je moguće, ili bi moglo biti moguće u budućnosti, ostaje još jedno pitanje: čak i kada biste mogli da budete vraćeni, da li biste to uopšte želeli? Na kraju krajeva, bili biste nasukani u čudnom svijetu, odvojeni od svega što je vaš život uopće činilo vrijednim življenja.

Anders Sandberg, filozof sa Instituta za budućnost čovječanstva Univerziteta u Oksfordu, upoređuje izglede za preporod sa „privremenim izbjeglicama – ne možete preživjeti u sadašnjosti, jedina vam je šansa da na neki način izbjegnete u stranu zemlju“. Ali za Sandberga, zagovornika krionike koji svaki dan nosi medaljon na kojem su ispisane njegove krioničke upute: „Život je vrijedan življenja. Zaista uživam što sam živ. Sve dok je to istina, želim da pokušam da se zadržim. Ali to je naravno kockanje.”

„Nemate šta da izgubite, sve da dobijete. Osim nekog novca od životnog osiguranja. A za mene je vrijedno toga. To mi daje mir“, kaže Kowalski, koji je zajedno sa suprugom i sinovima prijavljen za krionsku konzervaciju. „Čak i ako ne radi, mi i dalje unapređujemo nauku, otkrivamo šta ne funkcioniše. A ako uspije, o moj Bože, upravo smo naišli na lijek za smrt, barem privremeno.”

Izvor: discovermagazine.com

Postoji mogućnost da je hidrogen u H20 na Zemlji došao sa Sunca!

Naučnici su možda odgovorili na dugotrajno pitanje o tome odakle je tačno Zemljina velika zaliha vode.

Nova studija objavljena u Nature Astronomy postulira da je možda postojao dodatni korak ka uobičajenoj teoriji da zemaljska voda dolazi od ugljičnih asteroida – a uključuje i Sunce.

Korijen početnog pitanja o Zemljinoj vodi, koja pokriva oko 70 posto planete, leži u hemijskom sastavu ugljičnih – također poznatih kao “C-tip” – asteroida. Iako sadrže vodu, ona je bogatija deuterijumom, težom verzijom vode bogate vodonikom koju imamo na Zemlji.

Gledajući dalje od Zemlje, istraživači su primijetili da je Sunce veoma bogato vodonikom. A sada je grupa naučnika pretpostavila da su vjetrovi nastali iz sunčevih baklji možda stupili u interakciju s asteroidima tipa C koji su pogodili ranu Zemlju, što je rezultiralo našim dobrim starim H2O.

„Sitnozrnasta prašina, koju je udario solarni vetar i uvučena u Zemlju koja se formirala pre milijardi godina, mogla bi biti izvor nestalog rezervoara vode na planeti“, rekao je Luke Daly, geolog sa Univerziteta u Glazgovu i glavni autor lista. informativni odjel škole.

Zajedno sa škotskom institucijom, studija je provedena u tandemu s istraživačima iz brojnih drugih škola i organizacija uključujući Univerzitet Purdue, Oxford i NASA.

Kako su autori studije napisali u The Conversation, otkriće bi bilo nemoguće da im nije bio odobren pristup trima “ekstremno rijetka” dijela asteroida Itokawa koje je 2010. prikupila misija Hayabusa Japanske svemirske agencije (JAXA), “svaki otprilike širine ljudske dlake.”

Štaviše, nisu čak ni tražili vodu, već su umjesto toga tražili „proučavanje vanjskih površina ovih čestica prašine na potpuno nov način kako bi vidjeli da li je na njih uticalo Sunce’.”

“Ovo otkriće vode bilo je vrlo neočekivano!” pisali su koautori lista. “Po svemu što smo znali, ovi minerali sa asteroida trebali su biti suvi kao kost.”

Ovo novo otkriće bi, u teoriji, moglo pomoći astrofizičarima da proučavaju vodu na drugim planetama koje bi ljudi mogli naseliti u dalekoj budućnosti.

To bi također, kao logična krajnja tačka, mogla biti ključna informacija u nadolazećim vodenim ratovima – pa aleluja za to.

Otkud mi na planeti Zemlji?

U nedavno izašlom filmu “Moonfall” spominje se teorija da su nas na planetu Zemlju poslali udaljeni vanzemaljci koji su u biti bili isti kao mi, a da su nas poslali u udaljeni dio Svemira da bi nas zaštitili od poludjele vještačke inteligencije koju su stvorili, a koja se okrenula protiv njih da ih istrijebi.

Sa aspekta nauke i filozofije postoji nekoliko mogućnosti o porijeklu života na Zemlji.

Jedna od poznatih opcija je abiogeneza, odnosno da je živi svijet nastao iz neživog, posve slučajno, a ako ćemo pošteno ne mora biti ni slučajno. Možda je neka vansvemirska civilizacija formirala naš Svemir ovakvim kakav jest s ciljem da se jednog dana na njoj javi život i eventualno evoluira u današnji oblik.

Druga mogućnost je i da su nas htjeli prevariti tj. da su nas formirali u današnjem obliku, ali da su nam ubacili fosile i ostalo da bi nama izgledalo kao da je došlo do evolucije iako nije došlo.

Treća mogućnost je da ništa nije onako kako izgleda odnosno da živimo u nekoj vrsti kompjuterske simulacije. Kako računarska tehnologija napreduje sve više izgleda da se uz dovoljno jake računare sve može simulirati i da ćemo jednog dana možda i našu svijest moći uploadovati u te simulacije.

Postoji nekoliko mogućnosti, a jedna od njih je i ona religijska, odnosno ona koju zagovaraju monoteističke religije. Ta verzija se u nekim stvarima preklapa sa naučnom verzijom, a u nekim potpuno odstupa.

Svaka teorija o porijeklu života na Zemlji ima svoje prednosti i nedostatke. Kada religiozni ljudi kažu da je sve stvorio Bog, onda oni nereligiozni pitaju šta je stvorilo Boga iako po definciji je Bog nešto šta nije stvoreno. Isto tako kada nereligiozni kažu da je sve nastalo iz ničega i posve slučajno, onda religiozni opravdano pitaju kako iz ništa može nešto nastati kad to krši zakon održanja energije, a onda naučnici kažu da ništa zapravo nije ništa nego neke kvantne fluktuacije isl. , ali s time se onda vrti u krug i neko može opravdano pitati šta je stvorilo kvantne fluktuacije, a mnogi naučnici po definciji uzimaju da su kvantne fluktuacije vječno postojale i da ih ništa nije stvorilo. Ispadne da šta je Bog za religiozne, to su zapravo kvantne fluktuacije za nereligiozne. Sve ispadne kao igra riječi i kao da svi misle na potpuno isto, ali ga drugim jezikom opisuju i drugačije ga doživljavaju. Religiozni temi pristupaju emocionalno, a nereligioznima krajnje racionalno i logički iako isto često pristrasno.

Postanak života na Zemlji je misterija, a misterija je i kuda ide ovaj svijet odnosno šta je konačna svrha života na Zemlji.

Kako je život nastao na Zemlji?

Čovjek se oduvijek pitao kako je nastao, tko ga je stvorio i zašto je stvoren. Pitanja takve prirode postavljana su kroz čitavu ljudsku povijest. Svaki drevni mislilac, filozof ili prorok pokušao je dati odgovor na ovo pitanje i predložiti neki mehanizam za rađanje života.

Čovjek je samo mali dio života. U stvarnosti postoji ogromna raznolikost stvorenja koja se zadržavaju oko nas. Kako su nastali? Jesmo li u bilo kakvom srodstvu s njima? Ovaj članak predlaže vam povratak u daleku prošlost kada na našoj planeti nije bilo života i pomaže vam da zamislite kako je život mogao nastati na njoj.

Panspermija

Prema starogrčkoj ideji, život postoji u cijelom svemiru. Distribuira se na različitim planetima u malim jedinicama kroz svemirsku prašinu, meteoroide, asteroide ili komete. Pretpostavljalo se da će pod povoljnim uvjetima temperature i vlage ove jedinice života oživjeti i roditi početna živa bića.

Vrlo je poznata činjenica da je kozmička prašina prisutna u svemiru. Hoyle i Wickramasinghe 1974. godine predložili su hipotezu da većina prašine u međuzvijezdanom prostoru mora biti uglavnom organska, da bi se život širio, što je Wickramasinghe kasnije pokazao tačnim.

Ali Panspermia pretpostavlja da u univerzumu postoji univerzalno spremište života i na taj način doista izbjegava odgovoriti na pitanje kako je život uopće nastao.

Božansko stvaranje

Jedno vjerovanje, uobičajeno među ljudima svih kultura, jest da su svi različiti oblici života, uključujući i ljudska bića, iznenada stvoreni božanskim djelovanjem prije otprilike 10 000 godina. Taj veliki broj stvorenja uvijek je bio isti i trajat će bez promjene od generacije do generacije, sve do svršetka svijeta.

Takva teorija stvaranja je neuvjerljiva jer fosili biljaka i životinja sugeriraju da je život mnogo starijeg podrijetla. Zapravo, neka istraživanja pokazuju da je život na Zemlji postojao i prije 3,5 milijarde godina.

Spontana generacija

Teorija poznata kao spontano generiranje držala je da složeni živi organizmi mogu nastati iz neživih predmeta. Miševi se mogu spontano pojaviti u uskladištenom zrnu ili se crvi mogu spontano pojaviti u mesu. Sintetizirao ju je grčki filozof i biolog Aristotel.

Prema Aristotelu, životinje i biljke nastaju u zemlji i u tekućini jer u zemlji postoji voda, a zrak u vodi, a u cijelom je zraku vitalna toplina tako da su u određenom smislu sve stvari pune duše. Stoga se živa bića brzo stvaraju kad god su ovaj zrak i vitalna toplina u bilo čemu zatvoreni.

Aristotelov utjecaj bio je tako velik i snažan da je njegov konstrukt spontane generacije ostao neupitan više od dvije hiljade godina. Prema Aristotelu to je bila lako uočljiva istina. No, talijanski je biolog Franceso Redi 1668. godine dokazao da se u mesu nisu pojavili crvi kad muhe nisu mogle položiti jaja.

Slika 1: Kada je tegla zatvorena i nema muha, nema ni crva u mesu.

Spontano stvaranje više nije diskutabilno među biolozima. Do sredine 19. stoljeća eksperimenti Louisa Pasteura i drugih pobijali su tradicionalnu teoriju spontanog stvaranja i podržavali biogenezu, ideju da samo život rađa život.

Hemijska evolucija

Život kakav poznajemo temelji se na molekulama koje sadrže ugljik. Stoga su sovjetski biohemičar, Oparin i britanski biolog Haldane, sugerirali da je život mogao nastati iz jednostavnih organskih molekula. Drugim riječima, da bi se razumjelo podrijetlo života, mora se znati o organskim molekulama na Zemlji.

Rana Zemlja bila je vruća vatrena kugla. Izvori energije poput kozmičkih zraka, UV zračenja, električnog pražnjenja munja i topline vulkana bili su lako dostupni. Stoga je zemlja djelovala poput velike tvornice koja dnevno proizvodi hiljade spojeva. Ovo je bilo stanje uznemirenosti.

U tim teškim uvjetima kisik nije mogao ostati slobodan kisik. Kombiniran je s drugim elementima u spojevima poput vode i vapnenca. Također su nastali spojevi ugljika i vodika, poput metana. Dušik i vodik kombinirani u amonijak. Ti se spojevi danas nazivaju organskim spojevima.

S vremenom je Zemlja počela da se hladi. Kako se dovoljno hladilo, uslijed kondenzacije pare nastale su dugotrajne kiše. Kiše su se počele nakupljati u udubljenjima na Zemlji i tako su nastali oceani. Voda je bila topla i nalik juhi, a sadržavala je razne vrste organskih molekula.

Interakcija između ovih spojeva u toplim vodama rezultirala je stvaranjem još više spojeva, koji su između ostalog sadržavali i aminokiseline u sastavu ugljika, vodika, dušika i kisika. Te se aminokiseline u velikom broju kombiniraju jedna s drugom i tvore proteine koji su građevni blokovi života.

Miller-Ureyev eksperiment

U raspravi o događajima koji su se morali dogoditi prije milijarde godina, postoji određena količina nagađanja i nesigurnosti. Ali obrazloženje mora biti u skladu s velikim brojem dostupnih dokaza, kao i s osnovnim zakonima fizikalnih znanosti.

Gornja ideja mogla bi se testirati ponovnim stvaranjem predloženih uvjeta rane Zemlje u laboratoriju.

Godine 1952. američki biohemičari Stanley Miller i Harold Urey učinili su potpuno istu stvar, ali u vrlo malom opsegu. Plinovitu smjesu metana, amonijaka, vodene pare i vodika u zatvorenoj tikvici na 80 Celzijevih stepeni podvrgavali su električnom iskrenju sedam dana.

Kada su pregledali 7 dana kasnije, utvrdili su da su se na dnu stvorile jednostavne aminokiseline, koje su neophodne za stvaranje proteina. Miller i Urey su pokazali da se nekoliko organskih jedinjenja može spontano formirati simuliranjem uslova rane Zemljine atmosfere, kako pretpostavljaju Oparin i Haldane.

Elementi života, koje čovjek proizvodi u laboratoriju.

Naučna zajednica širom svijeta bila je impresionirana ovim postignućem. Zapravo, tri godine nakon uspjeha Milerovog eksperimenta, američki fizičar Richard Feynman napisao je pjesmu pod naslovom atom u svemiru, slaveći čovjekovo znanje o porijeklu života na Zemlji.

Miller je nastavio svoja istraživanja sve do svoje smrti 2007. Ne samo da je uspio sintetizirati sve više i više vrsta aminokiselina, već je također proizveo širok spektar anorganskih i organskih spojeva vitalnih za ćelijsku izgradnju i metabolizam. Pozdravljamo napore takvog naučnika koji je svoj život posvetio proučavanju najvažnijeg pitanja poznatog čovjeku.

Izvor: https://www.wondersofphysics.com/2019/01/origin-of-life.html?m=1

Šta je to hipoteza rijetke Zemlje?

U planetarnoj astronomiji i astrobiologiji, hipoteza o rijetkim zemljama tvrdi da je za pojavu složenog višećelijskog života na Zemlji (i, nakon toga, inteligencije) potrebna nevjerovatna kombinacija astrofizičkih i geoloških događaja i okolnosti. Hipoteza tvrdi da je složeni vanzemaljski život vrlo nevjerojatan fenomen i da će vjerojatno biti izuzetno rijedak. Izraz “Rijetka zemlja” potječe od Rijetke Zemlje: zašto je složeni život neobičan u svemiru (2000.), knjige Petera Warda, geologa i paleontologa i Donalda E. Brownleea, astronoma i astrobiologa.

Carl Sagan i Frank Drake, između ostalih, zastupali su alternativno stajalište. Drži da je Zemlja tipična stjenovita planeta u tipičnom planetarnom sustavu, smještena u neiznimnom području zajedničke spiralne galaksije sa zabranom. S obzirom na princip osrednjosti (koji se naziva i Kopernikovim principom), vjerovatno je da svemir vrvi složenim životom. Ward i Brownlee tvrde suprotno: da su planete, planetarni sistemi i galaktička područja koja su prijateljski raspoloženi za život poput Zemlje, Sunčevog sistema i našeg područja Mliječnog puta vrlo rijetki.

Astronomi su 4. novembra 2013. izvijestili, na osnovu podataka svemirske misije Kepler, da bi moglo postojati čak 40 milijardi planeta veličine Zemlje u orbiti u nastanjivim zonama zvijezda sličnih suncu i zvijezda crvenih patuljaka unutar galaksije Mliječni put. 11 milijardi ovih procjenjenih planeta možda kruži oko zvijezda sličnih suncu. Prema naučnicima, najbliža takva planeta može biti udaljena 12 svjetlosnih godina. Sa najbližim pronađenim u 16 svjetlosnih godina (Gliese 832 c). Bez obzira na to, zaključivši da je složen život neuobičajen, hipoteza o rijetkim zemljama je moguće rješenje Fermijevog paradoksa: “Ako su vanzemaljci česti, zašto nisu očigledni?”

Lisnate ovce: jedine životinje sposobne za fotosintezu!

Lisne ovce su jedna od najčudnijih vrsta životinja na planeti.

Izgledaju kao domaća životinja, ponašaju se poput biljaka i žive u moru!

Mali morski puževi tehnički su životinje, ali poput biljaka, većinu svoje energije dobijaju od Sunca.

Kad lisne ovce jedu alge, oni usisavaju hloroplaste i uključuju ih u vlastita tijela u procesu zvanom kleptoplastika.

“Ovaj postupak, koji inače mogu izvoditi samo jednostanični organizmi, u suštini ih čini klizarima na solarni pogon!”

Smiješna mala stvorenja imaju lice krave ili ovce, ali leđa koja nalikuju kućnoj biljci.

Dugi su samo oko 5 mm i mogu se naći u plitkim morskim vodama u Japanu, Indoneziji i na Filipinima.

Koliko bi biljaka trebalo da proizvede dovoljno kisika za jednu osobu?

Kratak odgovor je 700 sobnih biljaka. To je najniži minimum. Ali komplicirano je, pa evo i dugog odgovora …

Kisik čini oko 20% zraka oko nas, ali samo 15% zraka koji mi izdišemo. Svakim dahom trošimo četvrtinu dostupnog kisika.

Prosječan čovjek udiše oko 7–8 litara zraka u minuti. Kroz cijeli dan to je oko 10k – 11.5k litara zraka. Prosječna žena je manja od prosječnog muškarca, pa uzmimo manji broj od 10 000 litara.

Deset hiljada litara može zvučati mnogo. Ali to je zato što o litrama razmišljamo samo u kontekstu benzina ili bezalkoholnih pića.

U normalnim atmosferskim koncentracijama (oko 400 ppm, tj. 0,04%), CO2 nam neće stvarati probleme. Pa, nikako direktno.

Ugljični dioksid postaje toksičan u većim koncentracijama. Na 5% je smrtonosan.
Sjećate se koncentracije CO2 u zraku koji udišemo? Da, takođe 5%.

Sat vremena izlaganja 5% CO2 ubit će vas, tako da će to produbiti i produžena izloženost 4% CO2.

Čovjek udiše oko 420 litara zraka na sat, a taj zrak ima otprilike 20% kiseonika. Tako čovjek dobiva 84 litre kisika svakog sata. Naučnici su utvrdili da prosječan list (ako postoji takav) stvara oko 5 mililitara kisika u isto toliko vremena.

Kratka matematika daje nam 84 / 0,005 = 16,800 potrebnih listova. Vaša prosječna zrela kućna biljka može imati oko 25 listova, daje nam 672 biljke. Vjerovatno je najbolje zaokružiti do 700 kako bi bili sigurni.
Mi izdvajamo oko jednu molekulu dodatnog CO2 za svaku molekulu kisika koju konzumiramo, a biljke rade suprotno. To znači da bi ovih 700 biljaka trebalo spriječiti i trovanje ugljičnim dioksidom.
Dakle to je naš (pojednostavljeni) odgovor! Ako ste se ikada zaglavili u nepropusnoj sobi prosječne veličine, pogledajte okolo. Ako vidite manje od 700 sobnih biljaka, vjerovatno ćete biti mrtvi za nekoliko dana.

Također treba imati na umu da većina umjerenih biljaka proizvodi kisik samo tokom dana. Prelaze na apsorbiranje kisika i oslobađanje ugljičnog dioksida noću.

Osamdesetih i devedesetih godina grupa naučnika i bogat biznismen izgradili su najveći zatvoreni sistem u istoriji. Biosfera 2 bila je dvije godine grupi istraživača / ispitanika kako bi vidjeli mogu li preživjeti u nepropusnoj strukturi.
Rukovodioci projekata na kraju su morali natočiti dodatni kisik.
Zašto? Ugljični dioksid nastao disanjem tla reagirao je betonskim zidovima, stvarajući kalcijev karbonat i vodu. To je značilo da CO2 nikada nije dospio u biljke i nikada se nije pretvorio u kisik.
Nakon 16 mjeseci, ova je neočekivana reakcija bila dovoljna da potroši kisik do opasnih nivoa.

Bilo koji oksidirajući materijal poput gvožđa također bi s vremenom trošio dragocjeni kisik.

Izvor: Medium