Razumijevanje gravitacije – iskrivljenja i talasanja u prostoru i vremenu

Razumijevanje gravitacije – iskrivljenja i talasanja u prostoru i vremenu

Newton i zakon gravitacije
Newton je objavio jedno od najslavnijih naučnih djela, Principia, 1687. godine. U njemu je opisao da je sila koja vuče predmete prema zemlji ista sila koja je u osnovi kretanja planeta i zvijezda.

Da bi došao do ovog zaključka, Newton je zamislio da odnese predmet daleko od površine Zemlje i baci ga. Ako ga bacite s premalo zamaha, on će pasti prema Zemlji, zarobljen gravitacijom poput nas samih. Ako ga bacite s previše zamaha, ubrzaće se od planete, započinjući putovanje u svemirske domete. Ali sa tačno pravim zamahom, možete ga baciti tako da neprestano pada oko Zemlje, okolo i okolo u vječnom natezanju konopa. Predmet pokušava nastaviti putem kojim ste ga bacili, ali gravitacija ga neprestano uvlači. Uz pravilan balans, objekt se sada nalazi u orbiti oko Zemlje – baš poput Mjeseca ili poput Zemlje oko Sunca.

Newton je formulisao ovaj uvid u matematičku jednadžbu, danas poznatu kao zakon univerzalne gravitacije. U kombinaciji sa znanjem o geometriji i ostalim Newtonovim jednadžbama kretanja, možemo ga koristiti za predviđanje kretanja planeta ili putanja kometa ili koliko je snage potrebno da se raketa dovede do Mjeseca.

Newtona priznajemo ne samo zbog njegove ideje, već i zato što ju je formulirao u jednačinu koja je predviđala s većom preciznošću nego ikad prije. Ali nije bilo savršeno – Newtonove jednadžbe dale su neka pogrešna predviđanja i, što je još važnije, nije opisao kako gravitacija djeluje na način na koji to radi. Newton je bio dobro svjestan toga kad je rekao,

Gravitaciju mora prouzrokovati agent koji stalno djeluje u skladu s određenim zakonima; ali da li je ovaj agent materijalni ili nematerijalni, ostavio sam na razmatranje svojim čitateljima.
Isaac Newton

Iskrivljenja u prostoru i vremenu
Više od 200 godina nakon što je Principia objavljena, svijet je još uvijek bio bez razumijevanja mehanizma gravitacije. Nakon toga je došao Albert Einstein – čovjek koji je na toliko načina trebao promijeniti svijet. Ali prije nego što pređemo na njegov posao, morat ćemo napraviti digresiju.

Ne možete znati krećete li se (konstantnom brzinom)

  1. godine, čak i prije nego što je Newton objavio svoje danas poznato djelo, Galileo Galilei je pisao o relativnom kretanju objekata poznatih u njegovo vrijeme: brodova.

Ako ste u zatvorenoj sobi na brodu koji plovi konstantnom brzinom, a vožnja je savršeno glatka, predmeti se ponašaju kao na kopnu. Ne postoji fizički eksperiment koji biste mogli provesti da li se krećete ili mirujete (pod pretpostavkom da ne virite iz okna). Ovo je srž ideje koja stoji iza relativnosti i isti je razlog zašto ne osjećamo kretanje naše planete oko Sunca ili kretanje našeg Sunčevog sistema kroz galaksiju.

Prostor i vrijeme su povezani
Gotovo 300 godina nakon Galileja, Einstein je razmišljao o posljedicama relativnosti u kontekstu važnog faktora: brzine svjetlosti. Nije bio jedina osoba koja je razmišljala o tim temama – drugi su fizičari u to vrijeme bili svjesni da na ovom frontu ima neodgovorenih pitanja. Ali Einstein je bio taj koji je formulirao teoriju – svoju teoriju posebne relativnosti – da objasni postojeće pojave i stvori nova predviđanja. U početku se činilo da posebna relativnost nema puno veze s gravitacijom, ali je Einsteinu bila bitan kamen za razumijevanje gravitacije.

POKRETNI SATOVI OTKUCAVAJU SPORIJE
Eksperimenti za vrijeme Einsteina pokazali su da se čini da je brzina svjetlosti konstantna. Bez obzira koliko brzo pokušavali da je sustignete, čini se da vam svjetlost uvijek odmiče brzinom od gotovo 300 000 000 metara u sekundi.

Zašto je ovo važno? Pa, zamislimo da sami konstruiramo sat od same svjetlosti. Dva ogledala postavljena su jedno nasuprot drugog, a „otkucaj“ sata je vrijeme potrebno da čestica svjetlosti putuje s jedne na drugu stranu i natrag.

Sada zamislimo da vaš prijatelj, koji je na svemirskom brodu koji zipa pokraj Zemlje, ima jedan od ovih satova. Čini se da za vašeg prijatelja sat radi normalno – čestice svjetlosti putuju gore-dolje, kako se očekivalo, a vrijeme teče na svoj uobičajeni način. Ali iz vaše perspektive, gledajući brod kako prolazi, svjetlost se pomiče i gore i dolje i u stranu, s brodom. Svjetlost putuje veću udaljenost sa svakim otkucajem.

Dakle, za svemirskog putnika svjetlost putuje brzinom od 300 000 000 m / s i samo gore-dolje; a posmatraču koji je vezan za Zemlju, svjetlost putuje 300 000 000 m / s, ali mora preći veću, dijagonalnu udaljenost; tada promatraču uz Zemlju sat treba duže da “otkuca”.

Taj se efekt naziva vremenska dilatacija. Što brže putujete kroz svemir, to sporije putujete kroz vrijeme.

PERSPEKTIVNA PITANJA
Ali čije je vrijeme zaista usporeno? Je li to osobe na Zemlji, koja gleda svog prijatelja kako prolazi kroz njen svemirski brod? Ili astronaut, koji tvrdi da ostaje miran dok Zemlja prolazi?

Čudno je da su oba gledišta valjana, ali samo dok su oba u stalnom pokretu.

Za ilustraciju, pretpostavimo da su, kada je astronaut napustio Zemlju, on i njegov prijatelj bili istih godina. Kad on ode, svemirski brod ubrzava od Zemlje. Kad se vrati, svemirski brod usporava kako bi izbjegao pad. I prilikom odlaska i povratka svemirski brod mijenja referentni okvir i naš astronaut može osjetiti promjenu kretanja. Eksperimenti izvedeni unutar svemirskog broda za vrijeme ubrzavanja i usporavanja pokazali bi da se nešto mijenja. To ruši simetriju situacije, a kada se svemirski brod spusti natrag na Zemlju, naš astronaut zaista će biti mlađi od svog kolege vezanog za Zemlju.

Efekti su primjetni samo ako su putovali jako, jako brzo – ali još uvijek je istina reći da će današnji astronauti i piloti borbenih aviona koji se vrate iz brze misije, a ostarit će i malo i manje od ostalih tokom te misije.

ČETIRI DIMENZIJE PROSTORNOG VREMENA
Slijedom ovoga, umjesto da razmišljamo o tri dimenzije prostora i jednoj zasebnoj dimenziji vremena, možemo ih smatrati četiri dimenzije „prostora-vremena“. Što brže putujete kroz svemir, to sporije putujete kroz vrijeme i obrnuto.

OBJEKTI PRI KRETANJU SE SAŽIMAJU U PROSTORU
Još jedna posljedica posebne relativnosti je da se čini da se objekti koji se brzo kreću skupljaju u smjeru svog kretanja. (I opet, ovo se preokreće, ovisno iz čije perspektive gledate.)

To proizlazi iz izobličenja vremena – uostalom, možete izmjeriti dužinu nečega prema količini prostora koji nešto putuje kroz vrijeme (npr. Svjetlosne godine, svjetlosne sekunde). I dok je lukavo zamisliti mjerenje dužine predmeta u pokretu iz tuđe perspektive, kontrakcija dužine je stvarni, fizički efekt, a ne samo rezultat nepreciznih mjerenja.

Za razliku od dobnih razlika koje mogu nastati dilatacijom vremena, ne postoje rezidualni efekti zbog kontrakcije dužine nakon što se pokretni objekt i posmatrač ponovo sjedine.

Razumijevanje gravitacije
Einsteinov opis gravitacije dovodi do situacija jednako bizarnih kao i posebna relativnost – uključujući putovanje kroz vrijeme!

UBRZANJE I GRAVITACIJA MOGU DA SE NE MOGU RAZLIKOVATI
Zamislite da se budite u svemirskom brodu, ubrzavajući kroz svemir. Baš kao što ste gurnuti natrag u sjedište automobila koji ubrzava, svemirski brod koji vas ubrzava odgurne vas u stranu nasuprot onoj prema kojoj ubrzavate. Uz određenu brzinu ubrzanja, set vaga mogao bi vam reći da težite potpuno isto kao i kad ste kod kuće na Zemlji.

Postoji li bilo kakav fizički eksperiment koji biste mogli obaviti u granicama svog svemirskog broda da biste utvrdili jeste li zaista ubrzavali kroz svemir (pod pretpostavkom da nije bilo prozora kroz koji ste mogli gledati) ili ste se, umjesto toga, nalazili u svemirskom brodu stacionarnom na površini Zemlja? Einstein je rekao ne – baš kao što je Galileo zamišljao nerazlučivost osobe u jedrenjaku s konstantnim kretanjem (zatvorenim bez prozora) i osobe na kopnu, Einstein je shvatio da se i efekti ubrzanja i gravitacije ne mogu razlikovati. To se naziva principom ekvivalencije.

Einstein je shvatio da se efekti ubrzanja i gravitacije ne mogu razlikovati.

PROSTOR SE ZAKRIVLJUJE ISPOD UBRZANOG POKRETA
Jednom kada je Einstein formulirao princip ekvivalencije, gravitacija je postala manje misteriozna. Svoje znanje o ubrzanju mogao je primijeniti kako bi bolje razumio gravitaciju.

Možda znate da ubrzanje ne znači uvijek promjenu brzine, kao kad ubrzavate u automobilu, gurajući vas na naslon sjedala. To također može značiti promjenu smjera, na primjer kada zaobiđete kružni tok, zbog čega ćete se nagnuti prema boku automobila.

Da to dalje proširimo, zamislimo cilindričnu karnevalsku vožnju gdje ste vi i vaši suputnici prikovani za vanjsku površinu. Cilindar se okreće sve brže i brže dok ubrzanje ne popusti i kretanje ne ostane konstantno. Ali čak i kad je brzina konstantna, i dalje osjećate ubrzano kretanje – osjećate se prikovanim za vanjski rub vožnje.

Da je ova okretaja bila dovoljno velika i kretala se dovoljno brzo, počeli biste primjećivati ​​neke bizarne efekte u samoj vožnji, ne samo sa stajališta nekoga tko stoji izvan nje.

Svakom rotacijom oni na rubu vožnje prelaze puni opseg cilindra – dok se u samom središtu gotovo uopće ne pomiče. Dakle, ako bi netko stajao u samom središtu vožnje (možda ga drži ograda, sprečavajući ga da padnu na rub), primijetio bi sve one čudne efekte koje smo vidjeli u posebnoj relativnosti – da će se oni na rubu promijeniti u dužini, i njihovi će satovi otkucavati sporije.

GRAVITACIJA JE ZAKRIVLJENJE PROSTOR – VREMENA
Princip ekvivalencije govori nam da se efekti gravitacije i ubrzanja ne mogu razlikovati. Razmišljajući o primjeru cilindrične vožnje, vidimo da ubrzano kretanje može iskriviti prostor i vrijeme. Tu je Einstein spojio tačke sugerirajući da je gravitacija iskrivljenje prostora i vremena. Gravitacija je zakrivljenost svemira uzrokovana masivnim tijelima koja određuje put kojim predmeti putuju. Ta zakrivljenost je dinamična, kreće se kako se ti objekti kreću.

U Einsteinovom pogledu na svijet, gravitacija je zakrivljenost prostor – vremena uzrokovana masivnim objektima. Izvor slike: T. Pyle / Caltech / MIT / LIGO Lab.

Ova teorija, opća relativnost, predviđa sve, od orbita zvijezda do sudara asteroida do jabuka koje padaju s grane na zemlju – sve što smo očekivali od teorije gravitacije.

Prostor vrijeme zahvaća masu, govori joj kako da se kreće … Masa zahvaća prostor vrijeme, govori mu kako da se zakrivi.
Fizičar John Wheeler

Uspjeh opšte relativnosti
Baš kao što je Newtonova formulacija zakona gravitacije bila dragocjena zbog njihove prediktivne moći, isto vrijedi i za Einsteinove. Do danas su njegova predviđanja – koliko god čudno zvučala – izdržala test vremena.

Dokazi o Einsteinovoj teoriji gravitacije uključuju savijanje zvjezdane svjetlosti (ili, u ovom slučaju, svjetlosti čitavih galaksija) oko masivnih objekata. Izvor slike: ESA / Hubble & NASA / Wikimedia Commons.

Gravitacijski talasi
EHO JAKO UDALJENE KATAKLIZME
Zamislite dva vrlo masivna predmeta, poput crnih rupa. Ako bi se ti objekti sudarili, potencijalno bi mogli stvoriti ekstremne poremećaje u tkivu svemira, krećući se prema van poput mreškanja u jezercu. Ali koliko su se daleko mogli osjećati takvi valovi? Einstein je predvidio da gravitacijski valovi postoje, ali vjerovao je da će biti premali da bi se otkrili dok su stigli do nas ovdje na Zemlji.

Tako je s velikim uzbuđenjem 11. februara 2016. godine znanstvena zajednica bila puna objave da je otkriven gravitacijski val. Bili su nam potrebni instrumenti sposobni za otkrivanje signala promjera jednog desethiljaditog dijela promjera protona (10-19 metara). To je upravo ono što Laser Interferometer Gravitational-Wave Observatory (LIGO), kojom upravljaju Kalifornijski institut za tehnologiju i Massachusetts Institute of Technology, može.

LIGO EKSPERIMENT
U LIGO eksperimentu laser se usmjerava u veliku strukturu tunela. Laserski snop je podijeljen tako da polovina putuje niz jedan od 4 kilometra dugih „krakova“, a druga polovina u isto vrijeme pada niz drugi krak od 4 kilometra. Na kraju svake ruke zrcalo reflektira svjetlost od lasera natrag odakle je došla, a dvije zrake se stapaju u jednu.

Uobičajeno, laserski zraci trebali bi se rekombinirati u isto vrijeme. Ali ako se gravitacijski talas talasa kroz svemir dok su detektori uključeni, to valjanje će ispružiti jedan krak strukture u obliku slova L prije rastezanja drugog. Gravitacijski talas narušava prolazak svjetlosti, što rezultira određenom vrstom interferencijskog svjetlosnog uzorka koji se detektira na kraju.

ASTRONOMIJA GRAVITACIONIH TALASA
Uspješni LIGO eksperiment otvorio je novu eru astronomije. Prije toga, astronomi su se uglavnom fokusirali na proučavanje elektromagnetskog spektra (uključujući svjetlost i radio valove). Kroz taj smo posao uspjeli otkriti ogromnu količinu našeg svemira, ali sada imamo potpuno novi način proučavanja svemira.

Otkriće gravitacijskih valova daje astronomima novi ‘smisao’ s kojim mogu istraživati ​​svemir, pa će tako gotovo sigurno biti iznenađenja pred nama. Ono što znamo je da će nam ova tehnika omogućiti bolje razumijevanje najmasivnijih objekata u svemiru kao što su crne rupe, neutronske zvijezde i supernove; i pružit će nam novi prozor za proučavanje kako je nastao svemir.

Da li je naše razumijevanje potpuno?
Iako je Einsteinova teorija gravitacije potvrđivana eksperimentom za eksperimentom, to ne znači da je naše razumijevanje cjelovito. U stvari, znamo da nešto nije sasvim u redu.

Jedno neodgovoreno pitanje je da li gravitaciju širi graviton – predložena (ali do sada neotkrivena) čestica odgovorna za gravitacijske interakcije. Još važnije, znamo da je opća relativnost u svom sadašnjem obliku nekompatibilna s drugim stubom moderne fizike: kvantnom mehanikom. Ovo je pokazatelj da su jedna ili obje teorije nepotpune ili da nam nedostaje neka druga ključna komponenta.

Hoće li Einsteinova teorija gravitacije ostati nepromijenjena, nije poznato. Ali proizveo je mnoga neočekivana, neintuitivna predviđanja koja su se iznova potvrđivala tokom više od sto godina. To je znak velike naučne teorije – daje predviđanja koja se u to vrijeme možda neće moći dokazati, ali će se suprotstaviti rigoroznim testiranjima. Ovo je bilo jedno od najvećih putovanja u istoriji nauke, uključujući ne samo Newtona i Einsteina, već i mislioce i činioce širom svijeta koji su radili na testiranju ovih teorija.

Uprkos tome, raskol između relativnosti i kvantne mehanike ostaje. Što se tiče sljedećeg, niko sa sigurnošću ne zna. Međutim, postoji nekoliko teorija – teorija struna, teorija petlji, višedimenzionalnih teorija – nedokazanih, ali s obećanjem da će postati sljedeća prekretnica u razumijevanju našeg kosmosa.

Izvor: Understanding gravity—warps and ripples in space and time – Curious (science.org.au)

Share

Leave a Reply

Your email address will not be published. Required fields are marked *