Otkriveno kontraintuitivno svojstvo fizike otkriveno je u živim organizmima

Još od kraja 19. stoljeća, fizičari su znali za kontraintuitivno svojstvo nekih električnih krugova koje nazivamo negativnim otporom. Povećanje napona u krugu obično uzrokuje i porast električne struje. Ali, pod nekim uvjetima, povećanje napona može uzrokovati da se struja smanji. To u osnovi znači da ih jači pritisak na električne naboje zapravo usporava.

Zbog veze između struje, napona i otpora, u tim situacijama otpor proizvodi snagu, a ne troši je, rezultirajući “negativnim otporom”. Danas uređaji s negativnim otporom imaju široku paletu primjena, poput fluorescentnih svjetala i Gunn dioda, koji se između ostalih uređaja koriste u radarskim puškama i automatskim otvaračima vrata.

Većina poznatih primjera negativne otpornosti pojavljuje se u uređajima napravljenim od ljudi, a ne u prirodi. Međutim, u novom istraživanju objavljenom u Novom časopisu za fiziku, Gianmaria Falasco i koautori sa Univerziteta u Luksemburgu pokazali su da je analogno svojstvo nazvano negativni diferencijalni odgovor zapravo raširena pojava koja se nalazi u mnogim biohemijskim reakcijama koje se događaju u živim organizmima . Oni identificiraju svojstvo u nekoliko vitalnih biohemijskih procesa, kao što su aktivnost enzima, replikacija DNK i proizvodnja ATP. Čini se da je priroda koristila ovo svojstvo da optimizira te procese i omogući da žive stvari djeluju efikasnije na molekularnoj skali.

“Ovaj kontraintuitivni, ali čest fenomen pronađen je u bogatstvu fizičkih sustava nakon njegovog prvog otkrića u niskotemperaturnim poluvodičima”, napisali su istraživači u svom radu. “Pokazali smo da je negativan diferencijalni odgovor rasprostranjena pojava u hemiji s glavnim posljedicama na efikasnost bioloških i umjetnih procesa.”

Kako su istraživači objasnili, negativan diferencijalni odgovor može se pojaviti u biohemijskim sustavima koji su u kontaktu s više biokemijskih rezervoara. Svaki rezervoar pokušava povući sustav do drugačije ravnotežne točke (poput točke ravnoteže), tako da je sustav stalno izložen konkurentskim termodinamičkim silama.

Kad je sustav u ravnoteži s okolinom, svaka mala uznemirenost ili buka, koja utječe na rezervoare, obično će uzrokovati povećanje proizvodne stope nekog proizvoda, u skladu s pozitivnom entropijom. Stopa proizvodnje proizvoda može se smatrati kemijskom strujom. Iz ove perspektive, povećanje buke koja uzrokuje porast hemijske struje analogno je „normalnom“ slučaju u električnim krugovima u kojima porast napona uzrokuje porast električne struje.

Ali kada sustav u kontaktu s više rezervoara izlazi iz ravnoteže, može različito reagirati na buku. U van-ravnotežnom sistemu dolaze dodatni faktori, tako da porast buke smanjuje hemijsku struju. Ovaj negativni diferencijalni odgovor analogan je slučaju u kojem električni krugovi iskazuju negativan otpor.

U svom radu, istraživači su identificirali nekoliko bioloških procesa koji imaju negativne diferencijalne odgovore. Jedan primjer je inhibicija supstrata, što je proces koji enzimi koriste za regulaciju njihove sposobnosti katalizacije kemijskih reakcija. Kada se jedan molekul supstrata veže na enzim, rezultirajući kompleks enzima i supstrata propada u proizvod, generirajući hemijsku struju. S druge strane, kada je koncentracija supstrata visoka, dvije molekule supstrata mogu se vezati za enzim, a ovo dvostruko vezanje sprečava enzim da proizvede više proizvoda. Kako povećanje koncentracije molekula supstrata uzrokuje smanjenje kemijske struje, to je negativan diferencijalni odgovor.

Kao drugi primjer, istraživači su pokazali da se negativan diferencijalni odgovor pojavljuje i kod autokataliznih reakcija – „samokatalicirajućih“ reakcija, odnosno reakcija koje proizvode proizvode koji kataliziraju samu reakciju. Autokatalitičke reakcije javljaju se u cijelom tijelu, poput reprodukcije DNK i stvaranja ATP-a, tokom glikolize. Istraživači su pokazali da negativni diferencijalni odgovori mogu nastati kada se dvije autokatalitičke reakcije istodobno pojave u prisustvu dvije različite koncentracije kemikalija (rezervoara) u vanbilansnom sustavu.

Istraživači su također identificirali negativne diferencijalne reakcije u disipativnom samo-sklapanju, procesu u kojem je potrebna energija da se sustav samoinstalira, čineći ga daleko od ravnoteže. Disipativno samo-sklapanje se dešava, na primer, kod ATP-a, samo-sklapanja aktinskih filamenata – duge tanke mikrostrukture u citoplazmi ćelija koje ćelijama daju strukturu.

Priroda sve radi s razlogom, a prisustvo negativnog diferencijalnog odgovora u živim organizmima nije iznimka. Istraživači su pokazali da ovo svojstvo daje prednosti za biohemijske procese, uglavnom u pogledu energetske efikasnosti. Inhibicija supstrata, na primjer, omogućava sistemu da dođe do homeostaze s manje energije nego što bi inače bilo potrebno. Pri disipativnom samo-sklapanju, negativni diferencijalni odziv omogućava sistemu da ostvari gotovo optimalan odnos signal-šum, čime u konačnici povećava efikasnost procesa samo-sklapanja.

Kako fizika može svrgnuti diktaturu

Mnogo puta posljednjih decenija svijet je gledao kako prosvjednici protestiraju u autoritarnim državama okrenutim prema snažno naoružanim državnim snagama, do tenkova. Ponekad pobijede, oslobađajući naciju. Ponekad završava ulicama koje teku krvlju. Kada bi organizatori protesta mogli prepoznati značajke koje vode uspjehu, svijet bi bio bolje mjesto. Dva društvena naučnika smatraju da se odgovor možda krije u usvajanju Newtonovih zakona kretanja, možda dokazujući tvrdnju da druge nauke zavide fizici.

Profesor s Harvarda Erica Chenoweth je koautor utjecajnih studija koje prikazuju pokrete koji uspijevaju privući više od 3,5 posto stanovništva koje je aktivno uključeno u borbu za uspjeh demokracije. Naravno, ovi aktivisti imaju puno širu podršku među ljudima koji ne mogu ili se boje izaći na ulicu. Ipak, Chenoweth i dr. Margherita Belgioioso sa Univerziteta Burnel u Londonu, pitali su se kako tako skromna manjina može postići tako velike stvari.



Jezik fizike toliko je uklopljen u kampanje za demokratiju da su svuda reference protestima „pokret“, „zamah kampanje“ ili čak „revolucija“. Chenoweth i Belgioioso pitali su se jesu li to više od pukih analogija i mogu li slijediti slične zakone.

Fizički moment jednak je masa puta brzina. Ako je masa kampanje broj ljudi koji su uključeni, tada je možda i njezina brzina jednako važna. U Nature Human Behavior, Chenoweth i Belgioioso definiraju brzinu kampanje kao broj događaja održanih u sedmici, uključujući nenasilne demonstracije, štrajkove i bojkotske kampanje. Koristili su bazu podataka o svakom pokušaju svrgavanja afričkog diktatora između 1990. i 2014. za testiranje teorije da bi udio nacionalnog stanovništva koji sudjeluje pomnožen s brojem održanih događaja poslužio kao dobar prediktor uspjeha.

„Iako su istraživanja pokazala da veliki broj učesnika povećava šanse za uspjeh u kretanju“, tvrdi se u dokumentu, „Uticaj participacije na efikasnost pokreta građanskog otpora često se zasniva na prijavljenom vršnom učešću, a ne na dinamičkim usporavanjima i tokovima sudjelovanja. “Izlazak 10 odsto populacije neke zemlje na ulice jednom može pokazati široku podršku, ali rijetko je moguće ako se ona ne održi.

Ne iznenađuje da postoji snažna povezanost između zamaha pokreta i uspješnog svrgavanja vladara. Autori su stvorili sedam modela koji su to iskoristili u predviđanju uspjeha kretanja, dodajući različite faktore za koje su mislili da bi mogli biti relevantni, poput veličine stanovništva i prosječnog bogatstva. Smatrali su da su oni mnogo bolji od jednostavnog praga od 3,5 posto angažmana, uprkos pažnji javnosti koju je Chenowethov prethodni rad privukao.

Zanimljivo je da nasilni protesti izgleda da ne povećavaju šanse za uklanjanje diktatora, iako ih nisu smanjili. Umjesto toga, ovi pokreti su uspjeli kada su njihovi iskazi podrške pomirili vojsku, policiju ili ključne igrače u vladajućoj koaliciji da promijene strane.

Izvor: IFL SCIENCE

Naučnici su otkrili način da vide iza zidova?

Zajedno s letenjem i nevidljivošću, visoko na listi želja svakog djeteta je mogućnost da se vidi kroz zidine ili oko zidova ili drugih vizuelnih prepreka. Ta je sposobnost sada veliki korak bliže stvarnosti jer su naučnici sa Univerziteta Wisconsin-Madison i Universidad de Zaragoza u Španjolskoj, izvlačeći iz predavanja klasične optike, pokazali da je moguće slike složenih skrivenih scena slikati projiciranim ” virtualna kamera “da se vidi oko prepreka.

Tehnologija je opisana u današnjem izvještaju (5. augusta 2019.) u časopisu Nature. Nakon što se usavrši, mogla bi se koristiti u širokom rasponu primjena, od odbrane od katastrofe do proizvodnje i medicinskog snimanja. Rad je u velikoj mjeri financiran od strane američke Agencije za napredne istraživačke projekte Ministarstva obrane (DARPA) i NASA-e, koja tehnologiju predviđa kao potencijalni način da se zaviri u skrivene špilje na mjesecu i Marsu.


Tehnologije za postizanje onoga što naučnici nazivaju „snimanje bez pogleda“ razvijaju se već godinama, ali tehnički izazovi ograničili su ih na mutne slike jednostavnih scena. Izazovi koji bi mogli biti prevaziđeni novim pristupom uključuju snimanje daleko složenijih skrivenih scena, razgledavanje više uglova i snimanje video zapisa.

“Ovo snimanje bez snimanja vida već je neko vrijeme prisutno”, kaže Andreas Velten, profesor biostatistike i medicinske informatike sa Medicinskog fakulteta i javnog zdravlja UW-a i senior medicine i javnog zdravlja i viši autor novog studija. “Bilo je dosta različitih pristupa tome.”

Osnovna ideja snimanja izvan linije vida, kaže Velten, okreće se oko korištenja indirektne, reflektirane svjetlosti, svjetlosnog odjeka, kako bi se snimile slike skrivenog prizora. Fotoni iz hiljade impulsa laserske svjetlosti reflektiraju se sa zida ili neke druge površine prema zatamnjenom prizoru, a reflektirano, difuzno svjetlo odbija se do senzora spojenih na kameru. Upućene čestice svjetla ili fotoni potom se koriste za digitalnu rekonstrukciju skrivene scene u tri dimenzije.

“Šaljemo svjetlosne impulse na površinu i vidimo kako se svjetlost vraća, i iz toga vidimo što je u skrivenom prizoru”, objašnjava Velten.

Nedavni rad drugih istraživačkih grupa fokusiran je na poboljšanje kvaliteta regeneracije scene u kontroliranim uvjetima, koristeći male prizore s jedinim objektima. Rad predstavljen u novom Nature izvješću nadilazi jednostavne prizore i bavi se primarnim ograničenjima postojeće tehnologije snimanja nelinearnog vida, uključujući različite materijalne kvalitete zidova i površina skrivenih predmeta, velike varijacije svjetline različitih skrivenih objekata, složene međusobne refleksije svjetla između objekata u skrivenom prizoru i ogromne količine bučnih podataka korištenih za rekonstrukciju većih scena.

Ovi izazovi zajedno sprečili su praktične primjene novih sistema za snimanje nelinearnog vida.

Velten i njegovi kolege, uključujući Diega Gutierreza s Universidad de Zaragoza, preokrenuli su problem, sagledavajući ga kroz konvencionalniju prizmu primjenjujući istu matematiku koja se koristi za interpretaciju slika snimljenih konvencionalnim sistemima vida. Nova metoda nadmašuje uporabu jednog algoritma za obnovu i opisuje novu klasu algoritama za obradu slika koji imaju jedinstvene prednosti.

Konvencionalni sustavi, napominje Gutierrez, interpretiraju razdvojeno svjetlo kao valove, koji se mogu oblikovati u slike primjenom dobro poznatih matematičkih transformacija na svjetlosne valove koji se šire kroz sistem za obradu slike.

U slučaju snimanja nelinearnog vida, izazov snimanja skrivenog prizora, kaže Velten, rješava se reformulacijom problema snimanja nelinearnog vida u problem difrakcije talasa i zatim korištenjem dobro poznatih matematičkih formula pretvara se iz drugih slikovnih sistema radi tumačenja talasa i rekonstrukcije slike skrivene scene. Radeći to, nova metoda pretvara bilo koji difuzni zid u virtualnu kameru.


Ono što smo učinili bilo je da izrazimo problem pomoću talasa “, kaže Velten, koja također drži fakultetske termine na UW-Madisonovom odsjeku za elektrotehničko i računarsko inženjerstvo i na Odjelu za biostatistiku i medicinsku informatiku, a povezana je sa Morgridgeovim institutom za istraživanje i UW -Madison Laboratorija za optičku i računsku instrumentaciju. “Sistemi imaju istu osnovnu matematiku, ali otkrili smo da je naša rekonstrukcija iznenađujuće robusna, čak i koristeći stvarno loše podatke. To možete učiniti s manje fotona. ”

Koristeći novi pristup, Veltenov tim pokazao je da se skriveni prizori mogu zamisliti uprkos izazovima složenosti scene, razlikama u reflektorskim materijalima, raspršenom ambijentalnom svjetlu i različitim dubinama polja za objekte koji čine scenu.

Mogućnost suštinskog projiciranja fotoaparata s jedne površine na drugu sugerira da se tehnologija može razviti do točke u kojoj je moguće vidjeti oko više uglova:
“Da bi to učinili, svjetlost mora proći višestruke refleksije, a problem je kako odvojiti svjetlost koja dolazi s različitih površina? Ova” virtualna kamera “to može učiniti. To je razlog za složenu scenu: događa se više odskoka i složenost scene koju slikamo veća je od onoga što je ranije učinjeno. ”

Prema Veltenu, tehnika se može primijeniti za stvaranje virtualnih projiciranih verzija bilo kojeg sistema za obradu slika, čak i video kamera koje snimaju širenje svjetlosti kroz skrivenu scenu. Veltenov tim, u stvari, koristio je tehniku da stvori video transporta svjetlosti u skrivenom prizoru, omogućavajući vizualizaciju svjetlosti koja odskakuje do četiri ili pet puta, a što, prema naučniku iz Wisconsina, može biti osnova da kamere vide oko sebe više od jednog ugla.


Tehnologija bi se mogla dalje i dramatičnije poboljšati ako se mogu osmisliti nizovi senzora koji će uhvatiti svjetlost reflektiranu sa skrivene scene. Eksperimenti opisani u novom Nature dokumentu ovisili su o samo jednom detektoru.

U medicini ova tehnologija obećava stvari poput robotske hirurgije. Sada je vidno polje hirurga ograničeno, na primer, kada rade osjetljive postupke na oku, a tehnika koju je razvio Velten-ov tim mogla bi pružiti potpuniju sliku onoga što se događa oko zahvata.

Osim što pomaže u rješavanju mnogih tehničkih izazova snimanja nelinearnog vida, tehnologija, napominje Velten, može biti i jeftina i kompaktna, što znači da su aplikacije u stvarnom svijetu samo pitanje vremena.

Izvor:

  1. Xiaochun Liu, Ibón Guillén, Marco La Manna, Ji Hyun Nam, Syed Azer Reza, Toan Huu Le, Adrian Jarabo, Diego Gutierrez & Andreas Velten. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature