Koja je razlika između čestica fermiona i bozona i zašto je jako bitna?

Postoje samo dvije vrste temeljnih čestica poznatih u cijelom svemiru: fermioni i bozoni. Svaka čestica – pored normalnih svojstava koja poznajete kao masa i električni naboj – ima u sebi intrinzičnu količinu kutnog momenta, poznatu pod nazivom spin. Čestice s spinom koji dolazi u pola cjelobrojnih višekratnika (npr., ± 1/2, ± 3/2, ± 5/2 itd.) poznate su kao fermioni; čestice s cjelobrojnim spinom (npr. 0, ± 1, ± 2 itd.) su bozoni. Nema drugih vrsta čestica, temeljnih ili kompozitnih, u cijelom poznatom svemiru. Ali zašto je to važno?

Koja je tačno razliku između fermiona i bozona? Šta uzrokuje razlika u cjelobrojnom spinu i polu-cjelnom spinu?

Na prvi pogled, čini se da je kategoriziranje čestica tim svojstvima potpuno proizvoljno.

Slika 1: Poznate čestice u Standardnom modelu čestica

Uostalom, čestica je čestica, zar ne? Sigurno postoje veće razlike između kvarkova (koji doživljavaju jaku silu) i leptona (koji to ne čine) nego između fermiona i bozona? Zasigurno je razlika između materije i antimaterije veća od spina vaše čestice? I da li ste masivni ili ne bi trebao biti vrlo velik posao, sigurno u usporedbi s nečim trivijalnim kao kutni zamah, zar ne?

Kako se ispostavlja, postoji veliki broj malih razlika povezanih s spinom, ali postoje dvije velike one koje većina ljudi – možda čak i većina fizičara – nisu realizirali.

Slika 2: Fotoni, čestice i antičestice

Prva velika razlika je da samo fermioni imaju antičestice. Ako pitate kakva je antičestica kvarkova, to je antikvark. Antičestica elektrona je pozitron (antielektron), dok neutrino ima antineutrino. S druge strane, bozoni su antičestice drugih bozona, a mnogi bozoni su njihova antičestica. Ne postoji takva stvar kao antibozon. Sudariti foton s drugim fotonom? Z0 s drugim Z0? Jednako je dobro, s aspekta materije-antimaterije, kao što je anihilacija elektrona-pozitrona.

Slika 3: Bozon kao i foton može biti sam sebi antičestica

Također možete izgraditi kompozitne čestice iz fermiona: dva gore kvarka i jedan dolje kvark čine proton (koji je fermion), dok jedan gore i dva dolje čine neutron (također fermion). Zbog načina na koji se okreću, ako uzmete neparan broj fermiona i vežete ih, nova (kompozitna) čestica djelovati će kao fermion, zbog čega dobivate protone i antiprotone i zato se neutron razlikuje od antineutrona , ali čestice koje su izrađene od jednakih brojeva fermiona, poput kombinacije kvark antikvark (poznate kao mezon), ponašaju se kao bozon. Na primjer, neutralni pion (π0) je sam sebi antičestica.

Razlog tome je jednostavan: svaki od tih fermiona je spin ± 1/2 čestica. Ako ih dodate zajedno, možete dobiti nešto što je spin -1, 0 ili +1, što je cijeli broj (i time bozon); ako dodate tri, možete dobiti -3/2, -1/2, +1/2 ili +3/2, što ga čini fermionom. Tako su razlike između čestica i antičestica velike. Ali postoji druga razlika koja je možda još važnija.

Slika 4: Stanja energije elektrona za najmanju moguću energiju

Princip isključenja Pauli vrijedi samo za fermione, a ne na bozone. Ovo pravilo izričito navodi da u bilo kojem kvantnom sustavu, nijedna dva fermiona ne mogu zauzeti isto kvantno stanje. Bosons, međutim, nema takvo ograničenje. Ako uzmete atomsku jezgru i počnete dodavati elektrone na nju, prvi elektroni će zauzeti osnovno stanje, što je najniže energetsko stanje dopušteno. Budući da je to spin = 1/2 čestica, stanje elektronskog spina može biti +1/2 ili -1/2. Ako stavite drugi elektron na taj atom, morat će imati suprotno spin stanje također biti u temeljnom stanju. Ali što se događa ako želite dodati više elektrona? Oni se više ne mogu uklopiti u tlo i moraju se popeti na sljedeću energetsku razinu.

Zbog toga je periodična tablica elemenata tako uređena. Zato atomi imaju različita svojstva, zašto se vežu zajedno u zamršenim kombinacijama koje rade i zašto je svaki element u periodičnom stolu jedinstven, jer je elektronska konfiguracija svakog tipa atoma drugačija od bilo koje druge. Činjenica da nijedna dva fermiona ne mogu zauzeti isto kvantno stanje odgovorna je za fizikalna i kemijska svojstva elemenata, za ogromnu raznolikost molekularnih konfiguracija koje imamo danas i za temeljne veze koje čine kompleksnu kemiju i život.

Slika 5: Fermioni

S druge strane, možete staviti koliko god bozona želite u istom kvantnom stanju! To omogućuje stvaranje vrlo posebnih stanja bozona poznatih kao Bose-Einstein kondenzati. Ako dovoljno hladite bozone, tako da padnu u najniže kvantno stanje energije, možete uneti proizvoljan broj. Helium (sastavljen je iz parnog broja fermiona, tako da deluje kao bozon) postaje superfluid na dovoljno niskim temperaturama, posljedica Bose-Einsteinove kondenzacije. Od tada su u ovo kondenzovano stanje dovedeni gasovi, molekuli, kvazi-čestice i čak fotoni. Danas je to aktivno istraživanje.

Činjenica da su elektroni fermioni je ono što zadržava bijele patuljke iz kolapsa pod sopstvenom gravitacijom; činjenica da su neutroni fermioni sprečavaju da se neutronske zvezde još više sruše. Princip isključenja Pauli odgovoran za atomsku strukturu odgovoran je za održavanje najgušćih fizičkih objekata od svih da postanu crne rupe.

Slika 6: Zvijezde

Kada materija i antimaterija uništi ili raspadne, oni će zagrejati sistem za drugu količinu u zavisnosti od toga da li čestice podudaraju statistiku Fermi-Dirac (za fermione) ili Bose-Einstein statistiku (za bozone). Zato je kosmička mikrotalasna pozadina 2.73 K danas, ali kosmička neutrino pozadina odgovara temperaturi koja je oko 0.8 K hladnjaka: zahvaljujući anihilaciji i ovoj statistici u ranom Univerzumu.

Činjenica da su fermioni polu-cijeli spin i bozoni su cijeli spin je zanimljiv, ali mnogo zanimljivija je činjenica da ove dvije klase čestica podudaraju sa različitim kvantnim pravilima. Na temeljnom nivou te razlike omogućavaju naše postojanje.

Izvor: https://www.forbes.com/sites/startswithabang/2017/04/01/ask-ethan-whats-the-difference-between-a-fermion-and-a-boson/

Share

Leave a Reply

Your email address will not be published. Required fields are marked *